
Practical Over-Threshold Multi-Party Private Set Intersection
Rasoul Akhavan Mahdavi

University of Waterloo

Canada

r5akhava@uwaterloo.ca

Thomas Humphries

University of Waterloo

Canada

thomas.humphries@uwaterloo.ca

Bailey Kacsmar

University of Waterloo

Canada

bkacsmar@uwaterloo.ca

Simeon Krastnikov

University of Waterloo

Canada

skrastnikov@uwaterloo.ca

Nils Lukas

University of Waterloo

Canada

nlukas@uwaterloo.ca

John A. Premkumar

University of Waterloo

Canada

jpremkumar@uwaterloo.ca

Masoumeh Shafieinejad

University of Waterloo

Canada

masoumeh@uwaterloo.ca

Simon Oya

University of Waterloo

Canada

simon.oya@uwaterloo.ca

Florian Kerschbaum

University of Waterloo

Canada

florian.kerschbaum@uwaterloo.ca

Erik-Oliver Blass

Airbus

Germany

erik-oliver.blass@airbus.com

ABSTRACT
Over-Threshold Multi-Party Private Set Intersection (OT-MP-PSI)

is the problem where several parties, each holding a set of elements,

want to know which elements appear in at least t sets, for a certain
threshold t , without revealing any information about elements

that do not meet this threshold. This problem has many practical

applications, but current solutions require a number of expensive

operations exponential in t and thus are impractical.

In this work we introduce two new OT-MP-PSI constructions

using more efficient techniques. Our more refined scheme, which

we call t-PSI, runs in three communication rounds. t-PSI achieves
communication complexity that is linear in the number of parties,

the number of elements they hold, and the intersection threshold.

The computational cost of t-PSI is still exponential in t , but it
relies on cheap linear operations and thus it is still practical. We

implement our new constructions to validate their practicality for

varying thresholds, number of parties, and dataset size.

CCS CONCEPTS
• Security and privacy → Management and querying of en-
crypted data;

KEYWORDS
private set intersection, homomorphic encryption, oblivious pseudo-

random functions

1 INTRODUCTION
Two-party private set intersection (PSI) is a widely studied prob-

lem of computing which elements two participants have in com-

mon without revealing anything outside of the intersection [7–

9, 12, 17, 21, 23, 24]. PSI solutions have been practically deployed

for different use cases, such as ad conversions [29]. Multi-party

Comm. Rounds Comm. Complexity

Kissner & Song [15] O(m) O(nm3)

Secret-Shared MPC O(log2 nm) O(nm3
log

2 nm + nm3t)
Our work (t-PSI) O(1) O(nmtk)

Table 1: Communication costs for different OT-MP-PSI pro-
tocols wherem is the number of participants, n is the size of
each database, t is the threshold for subset size, and k is the
collusion threshold (number of key holders).

private set intersection schemes, where there are more than two

participants’ sets to compute over, also exist, but without practical

deployments [5, 8, 10, 16, 17].

We consider the following use case for the multi-party set inter-

section, where network operation centers collaborate to identify

common threats. These centers collect attack information as indica-

tors of compromise [4, 26]. These indicators are comparable [13, 14]

and the centers may want to determine whether they are subject

to a common attack. For example, Wagner et al. [28] report sharing

about 4, 000 indicators over a period of half a year using a central

platform. However, exchanging indicators of compromise without

probable cause is often not an option, since these indicators con-

tain privacy-protected information, such as IP addresses [18]. The

situation is often complicated by different legislations governing

those operation centers. Multi-party PSI allows the data centers

to find which indicators they have in common without revealing

those indicators not in the intersection. However, computing which

indicators of compromise are owned by all data centers might be

too restrictive, since an attack is worth investigating, even if it

affects some but not all of the centers.

In such cases, a related problem, Over-Threshold Multi-Party Pri-

vate Set Intersection (OT-MP-PSI) [15] applies. Form participants,

each with their own dataset of at most size n, the goal of OT-MP-PSI

is to determine the elements (and their owners) that occur in at

least t datasets, but reveal nothing else as long as no more than

a defined maximum number of participants collude. Kissner and

Song previously proposed a protocol for this problem, however,

its high communication and computation complexity make it im-

practical. Specifically, their protocol requires O(m) rounds and has

a communication complexity of O(nm3). Furthermore, although

existing multi-party private set intersection schemes can be lever-

aged to compute an OT-MP-PSI, by performing the intersections

of all subgroups of size t , this approach is extremely expensive,

since form > t participants there are
(m
t
)
possible subgroups of

size t . For example, we could design a OT-MP-PSI protocol using

a secret-shared multi-party protocol such as SCALE-MAMBA [1].

However, to do so for multi-party computation using a circuit simi-

lar to the one used in PSI based on two-party computation [11], the

optimal circuit size is O(nm log
2 nm) for O(n + log2 nm) rounds or

O(nm log
2 nm + nmt) for O(log2 nm) rounds.

In this paper, we present two different constructions of OT-MP-

PSI that are more efficient than previous proposals (see Table 1

for an overview of round and communication complexities of our

scheme compared to related schemes). Our protocol uses oblivious

pseudo-random functions (OPRF) and hashing to achieve efficiency

for the OT-MP-PSI problem. These techniques are commonly used

in efficient two-party PSI protocols [9, 17, 23], but have not yet

been applied to OT-MP-PSI. While the O(n(m logn/t)2t) compu-

tational complexity of our reconstruction phase is exponential in

the threshold t , we take care to keep the constants low in order to

scale to practical sizes for the envisioned use case of indicators of

compromise exchange. Our protocol is very flexible with tunable

parameters for the threshold t and the collusion threshold k , where
k is the number of key holders.

We first consider the case where there is a single non-colluding

key holder and present a strawman scheme (t-PSI0) with commu-

nication complexityO(nm) that runs in two communication rounds.

However, the constants in reconstruction prevent scaling to practi-

cally relevant problem sizes. Then, we present an improved scheme

(t-PSI) that runs in three communication rounds with a communi-

cation complexityO(nmt), but that is based on significantly cheaper
operations and thus is faster than our strawman variant. We extend

this scheme to the case where there are k key holders with the

assumption that the keyholders do not collude with one another.

Extending to multiple key holders results in increases in communi-

cation complexity to O(nmk) and O(nmtk) for t-PSI0 and t-PSI,
respectively. We implement and evaluate our protocol, showing

that the reconstruction phase is feasible form = 10 participants

and a threshold of t = 6. Our construction features a new primitive

called Oblivious Pseudo-Random Secret Sharing (OPR-SS), which

leverages oblivious pseudo-random functions to obliviously gen-

erate pseudo-random shares of a secret. This primitive may be of

independent interest in applications beyond OT-MP-PSI.

In summary, the contributions of this paper are:

(1) a new OT-MP-PSI protocol with communication complexity

O(nmk) and round complexity O(1).

(2) a new OT-MP-PSI protocol with communication complexity

O(nmtk), round complexity O(1), and low constants during

the reconstruction phase.

(3) a new primitive, OPR-SS, which allows a participant to gen-

erate pseudo-random shares of a secret with the help of a

key holder, that remains oblivious to the generated shares.

(4) a practical implementation and evaluation of our new OT-

MP-PSI protocol.

The remainder of the paper is structured as follows: Section 2

covers relevant background information required for the protocols

we introduce in Section 3. Section 4 contains our security proofs.

We present our evaluation in Section 5 followed by a review of

related work in Section 6. Finally, Section 7 concludes our work.

2 BACKGROUND
We briefly summarize the foundations of our over-threshold in-

tersection schemes, secret sharing schemes and oblivious pseudo-

random functions, as well as the Paillier cryptosystem.

2.1 Shamir’s Secret Sharing
The goal of secret sharing is to distribute m shares of a secret S
such that an appropriate subset of the shares can recover the secret.

A (t ,m)-threshold scheme ensures that any subset of t parties can
together reconstruct the secret S from their shares, but no subset of

fewer than t parties can collude to infer any information about S .
In Shamir’s secret sharing [27], the distributing party generates

t − 1 values {ci }i ∈[t−1] chosen at random from some finite field Fp
of prime order p, and forms the polynomial

f (x) = ct−1x
t−1 + ct−2x

t−2 + . . . c1x + S . (1)

The distributing party generates m shares by evaluating f at m
publicly-known distinct values. For instance, the share for party

i (with i ∈ Fp) is si = (i, f (i)). Since t points uniquely determine

a polynomial of degree t − 1, anyone possessing t shares si can
recover the secret S by means of Lagrange interpolation, i.e.,

S =
∑
i ∈[t]

[
si ·

∏
j ∈[t]
j,i

−j

i − j

]
. (2)

However, fewer than t shares reveal no information about S .

2.2 Oblivious Pseudo-Random Functions
Let F be a Pseudo-Random Function (PRF), which takes as inputs

an element ℓ and a secret key skPRF and outputs y = F (ℓ, skPRF).
Formally, we define the security of a PRF using a game GamePRF

between an adversary and a challenger (see Figure 1). In this game,

the challenger first generates a secret key skPRF and public key

pkPRF according to the security parameter λ. The adversary A

is given access to pkPRF , oracle access to the PRF F (·, skPRF) and
is free to choose any input (to F) ℓ′ , ℓ. The adversary outputs

ℓ to the challenger. The challenger computes y0 = F (ℓ, skPRF),
chooses y1 randomly, and then with equal probability provides

the adversary with either y0 or y1. The adversary succeeds if they

correctly distinguish one of these two cases. We say that F is secure

if for any probabilistic polynomially bounded adversary AF
, the

2

GamePRF

(skPRF , pkPRF) ← KGen(1λ)

(st, ℓ) ← AF (ℓ′,ℓ,skPRF)(pk)

y0 ← F (ℓ, skPRF)

y1 ←$G

b ←$ 0, 1

b′ ← AF (ℓ′,ℓ,skPRF)(yb, st)

return b = b′

Figure 1: GamePRF between an adversary and a challenger.

probability thatAF
succeeds in GamePRF is at most 1/2 + negl(λ),

where negl(λ) ∈ 2−Ω(λ).
An Oblivious Pseudo-Random Function (OPRF) is a protocol

between a key holder that holds a secret key skPRF and a participant

that holds an input ℓ, where the participant learns F (ℓ, skPRF)
without learning anything about skPRF or the value of F (ℓ′, skPRF)
for other inputs ℓ′, and the key holder does not learn anything

about ℓ nor F (ℓ, skPRF). OPRF’s can be established through generic

methods for secure multiparty computation (on top of circuits that

implement ordinary pseudo-random functions), or by means of the

Diffie-Hellman assumption (see Section 4).

2.3 Paillier Cryptosystem
The Paillier cryptosystem [22] is an additively homomorphic scheme

for public key encryption based on the intractability of the Compos-

ite Residuosity Class Problem. The ciphertexts are elements over

the multiplicative field FN 2 = Z∗N 2
, where N = p′q′ for primes

p′ and q′. Letting µ be the least common multiple of p′ − 1 and

q′ − 1, and choosing д to be a random base such that its order is

divisible by N , the public key is (N ,д) and the private key is (p′,q′).
Encrypting a plaintext message 0 ≤ ℓ < N is done by choosing a

random r < N and computing:

Enc(ℓ) = дℓrN mod N 2 . (3)

A given ciphertext C < N 2
is decrypted using µ:

Dec(C) =
L(Cµ

mod N 2)

L(дµ mod N 2)
mod N , (4)

where

L(ℓ) =
ℓ − 1

N
. (5)

Such a scheme satisfies the following homomorphic properties (the

moduli are implicit):

Dec(Enc(ℓ1)Enc(ℓ2)) = ℓ1 + ℓ2 ,

Dec(Enc(ℓ1)
ℓ2) = ℓ1ℓ2 .

The public key pkHE is N and д and the secret key skHE is µ.

3 PROTOCOL DESCRIPTION
In this section, we present two schemes to compute an over-threshold

multi-party private set intersection (OT-MP-PSI). First, we intro-

duce our notation and assumptions. Second, we present a new

protocol that we use in our schemes that we call Oblivious Pseudo

Random Secret Sharing (OPR-SS), and third we present our schemes

t-PSI0 and t-PSI, which differ in how they implement the OPR-

SS. We initially explain our schemes for a simplified scenario, and

later explain how to generalize them. We summarize all relevant

notation for our protocol in Table 2.

3.1 Protocol Overview
In our protocol, there are three entity types. First, there are m
participants, each denoted by an index i ∈ [m]. Each participant i
holds a set of elements Li , and we use n to denote the maximum set

sizen � maxi ∈[m] |Li |. The set of all elements across all participants

is L. Additionally, there are k key holders and r reconstructors. A
participant can simultaneously be a key holder, a reconstructor,

both or neither. The goal of the OT-MP-PSI protocol is to return

which elements appear at least t times among the group andwho the

owners of those elements are, where t is the intersection threshold.
We assume that all participants are semi-honest, i.e., they follow

the protocol specifications, but might try to infer private informa-

tion from other participants based on passive observation. We also

assume that, when there is a single key holder, the key holder is not

in the set of reconstructors and no reconstructor colludes with the

key holder. Note that we do not require this assumption in the case

of multiple keyholders. That is, when using multiple keyholders, it

is possible for a keyholder to be one of the reconstructors.

In the case where k > 1 and r > 1, we require that at least one

key holder does not collude with any reconstructor, and that no set

of t − 1 colluding parties includes a reconstructor.
The three entities we define for our protocol can all be under-

stood as roles that participants undertake. There are rules about

non-collusion among the participants, and additional non-collusion

rules for a single keyholder case, however there are no “trusted

third parties". Our protocol is configurable through the roles par-

ticipants take in terms of whether there are multiple or single

reconstructors and keyholders. However, for simplicity, we first

explain our schemes in the case where there is one key holder and

one reconstructor. Later, in Sections 3.5 and 3.6 we explain how

to extend them to the multi-reconstructor and multi-key holder

cases, respectively. Both our schemes rely on a new protocol that

we call Oblivious Pseudo-Random Secret Sharing (OPR-SS) (defined

in Section 3.2). We use OPR-SS to implement OT-MP-PSI protocols,

as follows:

(a) Each participant i ∈ [m] engages with the key holder in an

OPR-SS protocol to generate element dependent shares of

a fixed secret S = 0 for each of their elements ℓ ∈ Li while
keeping the key holder oblivious to the elements and the

shares.

(b) After this, each participant stores the shares of each of their

elements ℓ ∈ Li in a hash table with b bins. The bins in each

table are denoted bj , with j ∈ [b].
(c) The participants pad all of their bins to a pre-determined

size |b |max with dummy elements, and send them to the re-

constructor.

(d) For each bin, the reconstructor builds t-sized subsets of se-

crets from different users, and tries to recover a secret. If a

certain subset yields the pre-determined secret, S = 0, this

3

Table 2: Notation

General Parameters

λ Security parameter

m Number of participants, indexed by i ∈ [m].
k Number of key holders.

r Number of reconstructors.

n Maximum elements owned by a participant.

t Threshold for the intersection.

Li Set of elements owned by participant i; |Li | ≤ n.
L Set of all elements: L =

⋃
i ∈[m] Li .

b Total number of bins.

|b |max Maximum bin size allowed.

HB (·) Hash function used in hashing-to-bins.

OPR Secret Sharing

H (·) Hash function used in the OPR-SS scheme.

Gq Group of the PRF.

Fp Base prime field in the OPR-SS scheme.

sℓi Share of the element ℓ for participant i .
S Secret (we use the secret S = 0 for validation).

Homomorphic Encryption Scheme

FN Plaintext field.

FN 2 Ciphertext field.

EncpkHE Encryption with public key pk .

DecskHE Decryption with private key sk .

means that all of the elements in this subset correspond to

the same element.

(e) The reconstructor communicates to each participant which

of their elements were also owned by at least t − 1 other

participants.

3.2 Oblivious Pseudo-Random Secret Sharing
Both of our OT-MP-PSI schemes rely on a new protocol that we call

Oblivious Pseudo-Random Secret Sharing (OPR-SS). This protocol

combines the share generation and reconstruction properties of

Secret Sharing (SS), and the security properties of OPRFs. Formally,

an OPR-SS is a protocol between two parties: a key holder, that

holds a secret key skPRF and a value S , and a set of participants

that each hold inputs from L. The protocol allows each participant

i to generate shares sℓi (S) of S given an element ℓ ∈ L, such that the

key holder remains oblivious to the input ℓ and participants remain

oblivious about skPRF . Additionally, the generated shares meet

certain reconstruction properties for a threshold t even though the

key holder chooses the skPRF , and value S . More precisely, a t-OPR-
SS should fulfill the following security definition with respect to

the obliviousness of the share generation process for the keyholder

and any participant i .

Definition 3.1. We say a t-OPR-SS protocol is secure in the semi-

honest model if there exist two simulators SimKeyholder (skPRF)
and SimPar ticipanti (ℓ, s

ℓ
i (S)), such that their outputs are compu-

tationally indistinguishable (denoted

c
≡) from the respective views

VIEWOPR−SS
Keyholder (skPRF , ℓ) andVIEW

OPR−SS
Par ticipanti

(skPRF , ℓ) of their

Key holder Participant

H (ℓ)α participant i , element ℓ

α ← Zq
{H (ℓ)c jα }j ∈[t−1]

P(i)

P(x) = H (ℓ)
α ·

t−1∑
j=1

c jx j sℓi = P(i)1/α

Figure 2: Generation of share sℓi of element ℓ owned by par-
ticipant i in t-PSI0.

parties during a real OPR-SS protocol, i.e.

SimKeyholder (skPRF)
c
≡ VIEWOPR−SS

Keyholder (skPRF , ℓ)

SimPar ticipanti (ℓ, s
ℓ
i (S))

c
≡ VIEWOPR−SS

Par ticipanti (skPRF , ℓ)

In addition to the above security definition, an OPR-SS must

satisfy a correctness property for reconstruction. Let Recon(·) be
the reconstruction function for a set of secret shares. The correct-

ness of the OPR-SS protocol depends on the threshold parameter

t . Formally, the shares sℓi (S) generated by the t-OPR-SS protocol

fulfill the following correctness properties:

• Recon(sℓi1 (S), . . . , s
ℓ
it
(S)) = S

• For all sets {ℓ1, . . . , ℓt }, such that there exist at least two

different elements ℓj , ℓj′ :

Pr [Recon(sℓ1i1 (S), . . . , s
ℓt
it
(S)) = S] ≤ negl(λ)

In our OT-MP-PSI protocols, we set S as a (non-secret) constant

(S = 0). This allows us to use the reconstruction property to validate

whether or not a set of shares were generated with some identical

element ℓ (i.e., by validating whether a set of shares recover S = 0).

In the remainder of this paper, for simplicity, we use sℓi to denote

sℓi (0). However, in other applications, it may be appropriate to use

OPR-SS with S as an actual secret.

3.3 Strawman Scheme: t-PSI0
We now formally explain our first OT-MP-PSI scheme, that we

denote by t-PSI0. We use Gq to denote a group of size q and Fp to

denote a field of size p, where p = 2q + 1 and Gq is a subgroup of

Fp . We use H (·) to denote a hash function that maps values from a

binary string to Gq .

3.3.1 Share generation. To initialize the protocol, the key holder
performs a one time generation of a set of t − 1 random numbers

c1, . . . , ct−1 ← Zq to use across all participants and elements.

Participant i generates a random number α to obliviously send an

element’s hash,H (ℓ), to the key holder. The key holder forms a poly-

nomial, as in Shamir’s secret sharing, with coefficients {c j }j ∈[t−1]
and whose constant term is S = 0. Then, it evaluates this polyno-

mial in the participant’s identifier (i) and appends this value in the

exponent of the masked hash H (ℓ)α . The key holder returns this

value to the participant, who unmasks it (by raising to 1/α) and

the resulting value is the share sℓi . Figure 2 illustrates this process.

This is repeated to generate sℓi , for all i ∈ [m] and ℓ ∈ Li .

4

Note that we are using Shamir’s secret sharing scheme in a

slightly different style than its conventional use. In our scheme,

the goal is not to reconstruct the constant term P(0) as the secret,
but to use P(0) = 0 as a confirmation that different shares used to

reconstruct a polynomial actually belong to the same element ℓ.

This allows the reconstructor to verify integrity without actually

recovering the element.

3.3.2 Hashing-to-bins. Each participant i stores their shares in

a hash table containing b bins. Each share sℓi (for ℓ ∈ Li) is placed
in the bin indexed by j = HB (ℓ), where HB (·) is the binning hash

function. We choose b = β · n/logn, which guarantees that after

storing n elements in the hash table, the size of a bin never exceeds

|b |max = βm · logn with overwhelming probability. The constants

β and βm are a system-wide fixed parameter (see Section 5.4 for

the performance trade-offs of tuning these constants). After all

elements are stored into the appropriate bins, participants add

dummy elements until each bin reaches the maximum size |b |max.
Padding hides the number of real elements each participant stored

in their table.

3.3.3 Reconstruction. Every participant sends their hash tables

to the reconstructor. The reconstructor picks a bin location j ∈ [b].
Then, it chooses t of them participants and forms sets of t shares
by taking exactly one share from bin bj from each of the chosen

participants. The reconstructor verifies if the polynomial defined by

these shares passes through the point (0, 0) by performing Lagrange

interpolation in the exponent. For example, let S be the set of t
participants for which the reconstructor wishes to perform the

verification, and let {si }i ∈S be the chosen shares from each of

these participants. The reconstructor computes:

1 =
∏
i ∈S

s

(∏
j∈S\i

−j
i−j

)
i . (6)

If the above equality holds, then the selected shares were generated

from the same element. Note that the reconstructor still does not

learn the element ℓ (unless the reconstructor is a participant and

has ℓ within their own set).

The reconstructor repeats this verification for all possible t sized
subsets of them participants

(m
t
)
and all possible subsets of shares

formed by these members (|b |max)
t
. Finally, the reconstructor in-

forms each participant as to which of their shares were part of a

combination that met condition (6). Each participant knows which

of their elements was used to create each of their shares, and thus

learns which of their elements belong to the over-threshold inter-

section. The reconstruction process is summarized in Algorithm 1.

Algorithm 1 Reconstruction

1: for each bin bj with j = 1, . . . ,b do
2: for each t-subset of users S do
3: for each share combination {si }i ∈S do

4:

Reconstruct polynomial evaluating {si }i ∈S in

(6) (for t-PSI0) or (8) (for t-PSI).
5: if reconstruction succeeds then
6:

Reveal to each i ∈ S that their shares si are
in the over-threshold intersection.

3.3.4 Complexity. We analyse the complexity of t-PSI0 with a

single key holder and discuss multiple key holders in Section 3.6.

Theorem 3.2. t-PSI0 runs in two communication rounds with
a communication complexity of O(nm) where m is the number of
participants and n is the maximum number of elements owned by a
participant.

Proof. As shown in Figure 2, the communication between the

key holder and each participant takes places in one round. This

communication can happen in parallel for all participants and all of

their elements. Sending the shares to the reconstructor and receiv-

ing the notification about which elements are in the intersection

requires a second communication round. The key holder exchanges

two messages with each participant for each of their elements,

which requires 2mn = O(nm) messages. The participants (m) each

send a table of size ββmn = O(n) to the reconstructor. Therefore,

the asymptotic communication complexity is O(nm). □

Theorem 3.3. The computation complexity of t-PSI0 is
O(n(m logn/t)2t) wherem is the number of participants, each par-
ticipant holds at most n elements, and t is the intersection threshold.

Proof. The reconstructor forms all possible combinations of

t shares from distinct participants in each bin. There are b =
β · n/logn bins, and

(m
t
)
combinations of t participants out ofm of

them. Moreover, each of these participants have |b |max = βm · logn
shares in each bin. Hence, each for loop in Algorithm 1 repeats b,(m
t
)
, and (|b |max)

t
times, respectively. Applying Lagrange interpo-

lation to each combination takes t computations. (It also requires

an O(t2) setup phase to compute the terms in the exponents in (6),

which we can disregard in this asymptotic analysis since they only

need to be computed once.) Then, using

(m
t
)
< (m · e/t)t where e

is Euler’s constant, we get a cost of

b ·

(
m

t

)
· (|b |max)

t · t ≤
β · n

logn

(m · e
t

)t
· (βm · logn)

t · t . (7)

We can safely assume t < logn and βm · e ≤ m · logn/t . Thus,
in asymptotic notation we have O(n (m logn/t)2t). □

3.4 Faster Scheme: t-PSI
The reconstruction in t-PSI0 is slow (it has very high constants),

since Lagrange interpolation is executed in the exponent and mod-

ular exponentiations are expensive. To improve the reconstruction

time, we construct an OPR-SS for t-PSI with Lagrange interpola-

tion in the base. This is challenging, since the PRF requires expo-

nentiation, but secret sharing requires addition. No cryptographic

scheme supports both secure operations on its plaintext and does so

efficiently. Hence, we use a conversion between two cryptographic

primitives: PRFs using discrete logs and additively homomorphic

encryption.

We use skHE and pkHE to denote the secret and public keys of

Paillier Cryptosystem, respectively. Enc and Dec denote the homo-

morphic encryption and decryption operations respectively. The

plaintext field is FN and the ciphertext field is FN 2 , whereN > 2
λp2

(see Section 3.4.1 for more details). We use Gq , Fp , and H (·) as de-
fined for t-PSI0 in Section 3.3.

5

3.4.1 Share Generation. The key holder generates t − 1 random
numbers c1, . . . , ct−1 ←$Zq that are used for share generations

across all participants during this run of the protocol.

The generation of a share for participant i using element ℓ pro-

ceeds as follows. First, participant i generates a random number α
to obliviously send its element’s hash value, H (ℓ), to the key holder.
The participant sends H (ℓ)α , as well as дα , to the key holder. The

key holder generates random numbers r1, . . . , rt−1 ← Zp for this

communication session (in addition to the c1, . . . , ct−1 it gener-

ated initially). The key holder sends back дr jα · H (ℓ)c jα for each

j ∈ [t−1]. The goal of the r j values is to prevent the participant from
learning H (ℓ)c j . The participant removes α from the exponents,

encrypts the resulting values using the Paillier cryptosystem, and

sends these ciphertexts to the key holder. Since the Paillier cryp-

tosystem allows multiplication by a plaintext, and the key holder

knows the values r j and the generator д, it multiplies each received

ciphertext Enc[дr j ·H (ℓ)c j] by i j/дr j (for all j ∈ [t −1]). This results
in ciphertexts {Enc[i j · H (ℓ)c j]}j ∈[t−1], which are encryptions of

the polynomial coefficients already multiplied by the evaluation of

the polynomial in x = i . Since the scheme supports homomorphic

addition, the key holder just builds this polynomial, evaluated at

x = i , by adding these ciphertexts, and sends this addition back to

the participant. The participant decrypts the message and recovers

its share P(i) =
∑t−1
j=1 i

j · H (ℓ)c j .

Figure 3 shows this protocol. The key holder and the participant

repeat this process for every element ℓ ∈ Li . This process can run

in parallel among elements and among participants.

Note that this share generation algorithm requires switching

between the base prime field Fp and the plaintext field of the ho-

momorphic encryption FN . We use the statistical secret sharing

scheme introduced by Damgård and Thorbek [6] to convert an

encrypted message to a secret shared message over a field smaller

than the plaintext field. This conversion requires using a field FN
where N > 2

λp2.

3.4.2 Hashing-to-bins. This step is identical to the hashing-to-

bins described in Section 3.3.2.

3.4.3 Reconstruction. Reconstruction proceeds as in Section 3.3.3
(i.e., Algorithm 1), with the exception that the polynomial recovery

does not happen in the exponent. Given a set S of t users and one

share si from each of them, the reconstructor determines that the

shares were generated with the same element, and thus the element

is in the intersection, if the following equality holds:

0 =
∑
i ∈S

[
si ·

∏
j ∈S
j,i

−j

i − j

]
. (8)

3.4.4 Complexity. We analyse the complexity of t-PSI with a

single key holder (see Section 3.6 for the multi key-holder case).

Theorem 3.4. t-PSI runs in three communication rounds with
a communication complexity of O(nmt) wherem is the number of
participants, each holding at most n elements, and t is the intersection
threshold.

Proof. Figure 3 shows that the key holder and a participant

communicate for two rounds. Additionally, the participants com-

municate with the reconstructor for another round. This communi-

cation can be done in parallel for all participants. The number of

messages exchanged to generate a share sℓi isO(t), as shown in the

figure. Since this process is performed for each participant i ∈ [m]
and each of their elements ℓ ∈ Li , and |Li | ≤ n, the communication

complexity is O(nmt). The cost of sending the hash tables to the

reconstructor, O(nm), does not affect the asymptotic cost. □

Theorem 3.5. The computation complexity of t-PSI is
O(n(m logn/t)2t) wherem is the number of participants, each par-
ticipant holds as most n elements and t is the intersection threshold.

Proof. The proof is analogous to the proof of Theorem 3.3,

as the only difference in the reconstruction between t-PSI0 and
t-PSI is the fact that the reconstruction in t-PSI does not happen

in the exponent. This operation is cheaper than the reconstruction

in the exponent of t-PSI0, but both require O(t) computations in

asymptotic notation, and thus the proof follows accordingly. □

3.5 Multiple Reconstructors
Thus far we have described the schemes with a single reconstructor

(r = 1) that checks whether or not a subset of shares were generated

with the same element. We now emphasize that the reconstruction

stage is not restricted to a single participant and can be performed

by multiple participants in parallel. Since the reconstruction in each

bin bj (j ∈ [b]) can be performed independently, in the multiple

reconstructor case (r > 1) we can assign different subsets of the

bins to each reconstructor. The workload can even be distributed

according the computational power of each reconstructor. In this

case, each reconstructor would be responsible for informing the

participants for the bins they manage as to which of the partici-

pants’ elements are in the over-threshold intersection. Since the

participants would send each bin to only one of the reconstructors,

the communication complexity of the protocol is not affected.

3.6 Multiple Key Holders
It is possible to extend t-PSI for a multi key holder scenario (k > 1);

while such a setting trivially applies to t-PSI0. For the multiple key

holder setting, the key holders receive the initial message from the

participant and run a secure computation protocol among them-

selves using a group key and group random numbers. The group

keys c j = c j,1+c j,2+. . . c j,k are shared additively and the group ran-

dom number is Rj = д
αr j

. Key holder with identifier i holds shares
c j,i and Rj,i . The k key holders need to multiply the product of the

exponentiations of the participant’s messages to their key shares

and their random group shares using a secure computation. Instead

of performing this secure computation using secret-share based

secure computation with O(k2) communication in O(logk) rounds,
the participants can use precomputed shares Rj = Rj,1 ·Rj,2 · · ·Rj,k ,
since all inputs are random and independent of the elements in L.
Each key holder sends the product Rj,iH (x)

αc j,i
to the first key

holder, who multiplies them.

Since we assume semi-honest key holders, we must ensure they

do not learn additional information. The first key holder learns no

information, since all products are indistinguishable from random

6

Key holder Participant

H (ℓ)α ,дα participant i , element ℓ

α ← Zq

{дr jα · H (ℓ)c jα }j ∈[t−1]
r1, . . . , rt−1 ← Zq {дr j · H (ℓ)c j }j ∈[t−1]

{Enc[дr j · H (ℓ)c j]}j ∈[t−1] Initialize Paillier Cryptosystem

(skHE , pkHE)
(i j/дr j) × Enc[дr j · H (ℓ)c j]

→ {Enc[i j · H (ℓ)c j]}j ∈[t−1]

P(i)
P(i) =

t−1∑
j=1

Enc[i j · H (ℓ)c j] sℓi = Dec[P(i)]

Figure 3: Share generation for an element ℓ ∈ Li , owned by idi , in t-PSI.

numbers. In the second communication round of t-PSI, the key

holders use precomputed additive shares of the inverse R
−1/α
j =

R′j,1+R
′
j,2+ . . .R

′
j,k of the group random number. Then, the product

(of the ciphertexts, or sum of the plaintexts) can again be performed

by sending it to the first key holder, since they are semantically

secure ciphertexts. The entire protocol has O(k) communication

complexity per coefficient, element and participant. It runs in O(1)
rounds with an offline pre-computation phase independent of the

input. The multi key holder scheme otherwise follows the exact

same procedure as in t-PSI. Hence, the total communication cost

of t-PSI with k key holders is O(nmtk).

4 SECURITY
In this section, we perform the security analysis of our second

scheme, t-PSI. We do not derive the security proofs for t-PSI0
due to space restrictions, and because for practical use cases t-PSI
outperforms t-PSI0.

Definition 4.1. We say the Decisional Diffie-Hellman (DDH) As-

sumption holds iff, for any probabilistic polynomial-time adver-

sary A,

ρ, σ , τ ←$Zq

Pr[A(дρ , дσ , дτ) = 1] − Pr[A(дρ , дσ , дρσ) = 1] < negl(λ)

Theorem 4.2. If the DDH Assumption holds and H (·) is a random
oracle, each coefficient H (ℓ)c j of a share’s polynomial in t-PSI is a
pseudo-random function on ℓ.

Proof. We prove Theorem 4.2 by reducing an adversary APRF
in GamePRF to an adversary ADDH against the DDH Assump-

tion using a programmable random oracle. Let дρ ,дσ ,дτ be a

DDH instance. We program H (·) to output дρ on input ℓ. We

set the public key pkPRF to дσ . We can still answer queries for

F (ℓ′, skPRF) = H (ℓ′)skPRF where ℓ′ , ℓ by programming H (·)
to choose and store r ←$Zq and output R = дr . An answer to a

PRF query for ℓ′ is then дσ r = H (ℓ′)σ . We set yb to дτ . We set

the output of adversary ADDH to the output of adversary APRF.

All outputs are indistinguishable from the real scheme and any

advantage between the two adversaries translates directly. □

Theorem 4.3. The share generation of t-PSI is an OPR-SS scheme
that is secure in the semi-honest model.

Proof. By the protocol construction, each sℓi returned to the

participant is computed using the same coefficients in Shamir’s

secret sharing scheme and hence t ′ ≥ t participants can recon-

struct 0. However, since each coefficient is the output of a PRF on ℓ

(Theorem 4.2), t shares, where at least one share is for a different
ℓ′, reconstruct to S = 0 only with a negligibly small probability.

We want to highlight a subtlety of the protocol that stems from

the known “secret” 0. A set of t−1 secret shares sℓii are computation-

ally indistinguishable from a set of t − 1 uniformly chosen random

numbers, since they leave one degree of freedom for choosing ℓt ,

but any set of t secret shares allows testing whether they are from

the same element ℓ. To explain further, consider an adversary that

controls t − 2 parties. If this adversary obtains a share sℓ
′

i where

party i is not controlled by the adversary, e.g., during reconstruc-

tion, then this adversary cannot determine whether ℓ′ = ℓ for any

ℓ chosen by the adversary, since any t − 1 shares may reconstruct

to 0. Now, consider an adversary that controls t − 1 parties. This
adversary can choose ℓ, obtain secret shares and even reconstruct

the coefficients of the secret share polynomial using t − 1 shares,
since they know the “secret” 0. Hence, they can test whether for

another share sℓ
′

i it holds that ℓ′ = ℓ. However, the output of this

test is included in the output of the protocol and the attack would

be feasible for any adversary admissible to the protocol. Our initial

claim then follows: t − 1 secret shares sℓii are computationally indis-

tinguishable from a set of t − 1 uniformly chosen random numbers,

but any set of t secret shares allows testing whether they are from

the same element ℓ. It remains to show that the protocol is oblivious

and the simulators exist.

We construct the simulator SimPar ticipant (ℓ, s
ℓ
i) as follows. The

simulator outputs t − 1 random elements r ←$Fp . This is perfectly
indistinguishable, since the key holder chooses a uniform random

7

blinding element per message. Let r ←$ [0, 2λp]. The simulator out-

puts Enc(rp + sℓi). This is statistically indistinguishable, since the

key holder uses share conversion to hide the multiplications in FN .

We construct the simulator SimKeyholder (skPRF) as follows.
The simulator chooses ρ,τ ←$Zq , outputsд

ρ
andдτ , and programs

the random oracle H (·) for ℓ ← L to дτ /ρ . This is perfectly indis-

tinguishable, since all values are uniform and the random oracle is

consistent. The simulator outputs t − 1 random elements r ←$FN 2 .

This is computationally indistinguishable, since Paillier ciphertexts

are semantically secure [22].

□

5 EVALUATION
In this section we provide performance benchmarks for t-PSI0 and
t-PSI. For the share generation, we measure the communication

and computation overhead per participant with different deploy-

ment settings. For the reconstruction, we evaluate the scalability of

our proposed schemes with varying input size n, number of parties

m, and intersection threshold t .

5.1 Setup
We evaluate online share generation and offline reconstruction

in two separate experiments. We implement t-PSI0 and t-PSI
in C++ using NTL and GMP for large arithmetic operations and

libhcs
1
for the Pailler homomorphic encryption. Reconstruction

is parallelized using OpenMP.
2
For share generation, we execute

both the participant and key holder roles using virtual machine

instances (t2.micro) from the Amazon Elastic Compute Cloud (AWS

EC2).
3
These machines are connected via a network with a maximal

bandwidth of 25 Gbps. Each virtual machine only has access to a

single virtual CPU, to demonstrate that neither participants, nor

the key holder, require access to significant computing capacity.

We also use three connectivity settings in our evaluation of share

generation.

• Local: Two servers deployed in the same data center.

• Remote: Two servers in different data centers located on

the same continent (the U.S. west and east coast).

• Distant: Two servers in different data centers separated by

continents (the U.S. east coast and central Europe).

Note that as we use a real network for our experiments, i.e.,

between two AWS instances that are actually deployed on the

internet, we do not use any active network delay and throughput

mechanism in reporting the results of our experiments.

Finally, we execute reconstruction on a server running Ubuntu

18.04 in 64-bit mode using up to 128 cores of an IBM POWER8 CPU

(2.4GHz) with up to 1TB of accessible RAM. In all experiments,

for the field Fp we choose a prime p with at least 2048 bits as

recommended by NIST [3].

5.2 Share Generation
We micro-benchmark the generation of a share for a single element

between one participant and the key holder to evaluate how latency

and computational time contribute to the total share generation

1
https://github.com/tiehuis/libhcs

2
https://www.openmp.org/

3
https://console.aws.amazon.com/ec2/v2/home

runtime. Latency measures round-trip time and computational time

measures the joint local execution time for a participant and the key

holder. By distinguishing local, remote, and distant connectivity

settings, we evaluate the impact of latency on the share generation

time. In practice, latency is important as a lower bound to the total

running time of the protocol. The share generation is also impacted

by the network throughput, i.e. the maximum amount of data that

can be transmitted per second. We do not measure the delay caused

by the throughput separately, because the amount of data sent in a

micro-benchmark does not saturate the network bandwidth; mak-

ing its total runtime impact negligible. Our share-generation imple-

mentation does not support transmitting and processing multiple

elements within one round, which would be necessary to separately

measure delay caused by insufficient network bandwidth.

We execute the share generation protocol ten times in each con-

nectivity setting and report the average and standard deviation of

the runtime (in milliseconds) and the network traffic (in kilobits)

for schemes t-PSI0 and t-PSI in Table 3. With respect to commu-

nication, t-PSI0, sends approximately an order of magnitude less

data than t-PSI and is also up to two orders of magnitude faster.

However, even when factoring in the higher latency of t-PSI, the
largest contributor to runtime for t-PSI is computation. This can

be attributed to t-PSI requiring rather slow homomorphic encryp-

tion and decryption whereas t-PSI0 relies only on exponentiation.

Thus, in t-PSI0 the runtime and communication is constant for

arbitrary t , whereas in t-PSI we observe the runtime and commu-

nication to grow linearly with t , where the correlation with t can
be explained by t-PSI transmitting and processing t − 1 elements

in each round.

5.3 Reconstruction
We measure the time it takes to reconstruct elements from all

participants within a single bin for set sizes of up to n = 10
6
.

Reconstruction over multiple bins is inherently paralellizable and

the total reconstruction time can be extrapolated by multiplying

the time of for a single bin by the total number of bins. We set the

number of bins b = ⌈β · n/logn⌉, and the maximum bin size as

|b |max = ⌈βm · logn⌉, where β and βm are constants.
Note that although the value of βm can be obtained from n and

|b |max using the formula
βm

logn , we use βm to determine |b |max empir-

ically. We are able to optimize and find tighter bounds through our

empirical measurments. Thus, we use β ∈ {1, 4, 64} and experimen-

tally find the values of βm for each case by simulating the hashing

process 10 000 times. The resulting values for |b |max are shown in

Figure 4a. We observe a slightly higher than expected value for

|b |max for n = 512, which explains elevated runtimes for n = 512

in our benchmarks. Figure 4a also shows the communication over-

head, i.e., the number of shares that each participant sends to the

reconstructor (which is the same for t-PSI0 and t-PSI). This over-
head increases with the number of bins (i.e., with β) but is linear
with n, as predicted by our analysis.

In our benchmarks, we vary the number of partiesm, threshold

t , number of inputs n and the constant β . We report the average

execution time over three consecutive runs and show the standard

deviation as vertical error bars. Most of these bars are too small to

be seen at the scale at which we display the plots. Figure 4b shows

8

https://github.com/tiehuis/libhcs
https://www.openmp.org/
https://console.aws.amazon.com/ec2/v2/home

Local Remote Distant
Scheme t Time (ms) σ (ms) Time (ms) σ (ms) Time (ms) σ (ms) Comm (Kb)
t-PSI0 * 20 1 140 1 190 1 1.24

t-PSI

2 425 1 670 2 760 1 10.13

3 635 2 870 2 970 2 13.26

4 847 2 1090 3 1180 1 16.39

5 1057 3 1300 2 1400 8 19.53

6 1267 4 1500 4 1610 2 22.66

7 1479 2 1720 4 1820 2 25.80

8 1687 2 1920 3 2020 4 28.92

9 1901 6 2140 3 2230 4 32.06

Table 3: Share generation time and communication cost per participant of t-PSI0 and t-PSI averaged over 10 runs. t-PSI0 has
constant communication and computation costs for arbitrary t .

the reconstruction time per bin of t-PSI0 and t-PSI versus the

number of parties m for different threshold values t and a fixed

input set size of n = 1 024 and constant β = 1. We can see the

reconstruction time of t-PSI is almost three orders of magnitude

faster than t-PSI0. The reconstruction time scales polynomially

withmt
where t is fixed in all schemes, as predicted by Theorems 3.3

and 3.5. We did not evaluate t-PSI0 for t > 5 and t-PSI for t > 7

since the running times were impractical.

Figure 4c shows the reconstruction times when varying the

input size n and usingm = 10 and β = 1. We observe a logarithmic

increase in runtime with n because we only reconstruct over a

single bin. When reconstructing over all b bins, we would observe

a linear increase in runtime.

Figure 4d compares the reconstruction times for varying thresh-

old values, using m = {2t , 10} and β = {1, 64}, while n = 1 024

is fixed. The figure confirms that the total runtime is dominated

by the threshold t , as predicted by Theorems 3.3 and 3.5. We ob-

serve that the choice of the constant β has a significant impact on

the runtime, i.e., in t-PSI for t = 4 the runtime is decreased by

two orders of magnitude between β = 1 and β = 64. Note that

the runtime improvement is at the cost of higher reconstruction

communication as more bins have to be sent to the reconstructor,

albeit each bin contains fewer elements. The final decision on the

choice of β depends on the available network and computation

capacity. In our experiments, the reconstruction is the bottleneck

which explains why t-PSI with β = 64 performs best.

5.4 Discussion
There is a trade-off in the share generation time and the recon-

struction time between t-PSI0 and t-PSI. Although t-PSI0 has
constant communication overhead in t and t-PSI does not, our

benchmarks in Section 5.3 show that reconstruction in t-PSI is

orders of magnitude faster than reconstruction in t-PSI0. We also

observe that the reconstruction time is greater than the share gener-

ation time in Section 5.2, meaning that in practice t-PSI has a lower
overall runtime than t-PSI0 when taking both share generation

and reconstruction time into consideration.

We observe that tuning constants β and βm adjusts the compu-

tation and bandwidth costs. Increasing the number of bins b (i.e.,

β), allows decreasing the maximum bin size that the parties pad

each bin to |b |max (i.e., decrease βm) which increases communication

overhead (larger hash tables sent) while decreasing the computa-

tional cost of reconstruction. Recall that the reconstructor selects a

subset of t users and performs Lagrange interpolation with com-

binations of one share from each user, iterating over all (|b |max)
t

such combinations. Thus, increasing b reduces |b |max, and therefore
reduces the number of combinations that the reconstructor must

try. Experimentally (see Figure 4d), the impact of the constant β on

the computation is significant for β = 1 versus β = 64.

Our benchmarks show that the bottleneck of our protocol is

the offline reconstruction, which can be improved up to the lower

bound of a single reconstruction through parallelizing across more

cores. The experiments already show results with a parallelization

across up to 128 cores. Our benchmarks also show that participants

do not require large computation capacity to participate in the

protocol. Nonetheless, specifically for t-PSI, the total runtime can

be improved by adding higher computation capacity at the key

holder and participants. In practice, generating shares for multiple

elements can be optimised by batching multiple elements per round

and parallelizing the computation, which we have not implemented.

We confirm with our benchmarks sublinear scalability per bin

in the number of inputs. When reconstructing over all b bins, this

turns into a subquadratic reconstruction complexity, as predicted

by our theorems. We also confirm polynomial scalability by mt

where t is fixed and the number of partiesm is variable. For variable

thresholds t , we show an exponential increase in runtime which can

be traded-off for higher communication by choosing the constant

β for the number of bins accordingly.

We now highlight the following results in terms of practicality.

(For reference, Wagner et al. [28] report sharing about n = 4, 000

indicators over six months using a central platform.) Form = 10

participants, n = 1 024 inputs per participant and threshold t = 4,

each participant in scheme t-PSI has a communication overhead

of 2.10 MByte in the share generation. In the reconstruction, with

β = 1, each party sends 3 404 elements from the field Fp , which
results in a communication overhead of 0.87 MByte per participant.

If we assume each participant is a reconstructor, the reconstruction

over all bins (b = 148) is in total about 9 minutes. For β = 64,

the communication overhead in the share-generation stays the

same, but it increases to about 21.78 MByte in the reconstruction.

The reconstruction time over all bins (b = 9 455) decreases to 3

minutes per participant. At n = 10
6
inputs,m = 7 participants and

9

(a) Maximum bin sizes (solid lines) and communication overhead (dotted lines)
derived experimentally.

(b) Reconstruction time vs. number of partiesm (n = 1 024, β = 1).

(c) Reconstruction time vs. input set sizes n (m = 10, β = 1). (d) Reconstruction time vs. thresholds t (n = 1 024).

Figure 4: Reconstruction time of t-PSI0 and t-PSI for a single bin with different parameter configurations.

a threshold t = 3, we have a communication overhead in the share-

generation of 1.66 GByte per participant. In the reconstruction, with

β = 1, each participant sends 0.79 GByte and the reconstruction

time over all bins (b = 75 639) would take about 5h and 4 minutes to

complete. The reconstruction time can be reduced by increasing β .
For β = 8, the total reconstruction time over all bins (b = 605 111)

decreases to 4h and 23 minutes, while the communication overhead

increases to 2.32 GByte per participant.

6 RELATEDWORK
In this section we present an overview of related aproaches used

in other PSI problems (see Pinkas et al. for a more comprehensive

overview of other PSI problems [23]) before we discuss various

potential and existing approaches to over-threshold set operations.

Note that OT-MP-PSI is a distinct problem from the recent, simi-

larly named, multi-party threshold private set intersection problem,

where the participants wish to compute the intersection of their

sets only if the intersection set size meets some threshold [2].

6.1 Private Set Intersection
6.1.1 Public-Key PSI Protocols. Many approaches to PSI, includ-

ing this work, rely on public-key cryptography. For example, there

are protocols that rely on Diffie-Hellman key exchange [12, 21]

and protocols that rely on RSA [7]. The protocols by Freedman et

al. [8, 9] share a similar reliance to our work in that theymake use of

polynomial interpolation and the Paillier cryptosystem (or alterna-

tively, ElGamal), ultimately relying on the decisional Diffie-Hellman

assumption to obtain security guarantees. Public-key approaches

10

to PSI tend to have better communication complexity than other

methods, but higher overall computational costs [23].

6.1.2 PSI Protocols Based onOblivious Transfer. Oblivious Trans-
fer (OT) [25] is a two-party protocol where the sender holds several

pieces of data, one of which will be sent to the receiver. The re-

ceiver can freely choose which of the messages to learn while the

sender does not obtain any information about the receiver’s choice.

A common way to perform a large number of OT executions with

low amortized cost is through OT extension [23], which is often

used to efficiently construct OPRF’s for use in PSI [17, 23, 24].

6.1.3 Multi-Party PSI Protocols. Freedman et al. [8] first con-

sidered PSI in the multi-party setting, achieving a communication

complexity of O(nm) and a computational complexity of O(nm2),

in the semi-honest case. Cheon et al. [5] reduced the computational

complexity to O(nm) through the use of more efficient approaches

for polynomial evaluation. More recently Hazay et al. [10] and

Kolesnikov et al. [17] achieve O(nm) communication complexity

through schemes where a designated party participates in a pro-

tocol with all other parties (who perform very little local compu-

tation) and then combine the results. Although these protocols

achieve good results for conventional private set intersection, at

this time none of the protocols described above support practical

over-threshold set operations.

6.2 Over-Threshold Set Operations
Kissner and Song proposed protocols for private set intersection and

various related problems, including over-threshold set union [16]

and over-threshold set intersection [15]. Their approach to over-

threshold intersection requires local computation to factor a poly-

nomial of degreemn over a field or to evaluate the polynomial on

nm points to reconstruct the intersection. Unfortunatley, their pro-

tocol has a total communication complexity ofO(nm3) and requires

O(m) rounds of communication, which makes it less suitable than

our O(nmt) scheme, which requires O(1) rounds.
Although there are other potential designs for OT-MP-PSI pro-

tocols, as well as the protocol from Kissner and Song [15], they

ultimately suffer in terms of practical efficiency. For example, one

potential approach to perform OT-MP-PSI is to leverage generic

multi-party computation techniques. However, communication-

efficient, constant-roundmulti-party computation protocols [19, 20]

are not yet practical. Alternatively, recall from the introduction

that an OT-MP-PSI protocol could be constructed using a secret-

shared multi-party protocol such as SCALE-MAMBA [1], but the

optimal circuit size is O(nm log
2 nm) for O(n + log2 nm) rounds or

O(nm log
2 nm + nmt) for O(log2 nm) rounds.

7 CONCLUSION
In this work, we introduce two over-threshold multi-party pri-

vate set intersection schemes (t-PSI0 and t-PSI) that use our new
oblivious pseudo-random secret sharing protocol to achieve higher

efficiency than previous proposals. Our protocols offer flexibility

through tunable parameters that allow for tradeoffs between compu-

tation and communication cost. We additionally support spreading

the security requirements among multiple key holders as well as

distributing the computational cost among multiple reconstruc-

tors. The asymptotic communication of our schemes improves over

previous schemes. In our most efficient scheme, t-PSI, our compu-

tational cost is exponential in terms of our intersection threshold,

however, we leverage homomorphic encryption to reduce the over-

all cost of the scheme. With these optimizations, t-PSI for seven
participants each holding one million elements and a threshold

t = 3 takes around 5 hours. Furthermore, we show that when

accounting for the overall cost of both reconstruction and share

generation, in practice, t-PSI is most suitable for deployment.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

insightful comments and feedback. We gratefully acknowledge the

support of NSERC for grants RGPIN-05849, CRDPJ-531191, IRC-

537591, and the Royal Bank of Canada for funding this research.

REFERENCES
[1] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter Scholl, Nigel P.Smart,

and Tim Wood. SCALE–MAMBA software. https://homes.esat.kuleuven.be/

~nsmart/SCALE/, 2020.

[2] Saikrishna Badrinarayanan, Peihan Miao, and Peter Rindal. Multi-party thresh-

old private set intersection with sublinear communication. Cryptology ePrint

Archive, Report 2020/600, 2020. https://eprint.iacr.org/2020/600.

[3] Elaine Barker, William Barker, William Burr, William Polk, Miles Smid, et al.

Recommendation for key management: Part 1: General. National Institute of

Standards and Technology, Technology Administration, 2006.

[4] Eric W. Burger, Michael D. Goodman, Panos Kampanakis, and Kevin A. Zhu.

Taxonomymodel for cyber threat intelligence information exchange technologies.

In Proceedings of the 2014 ACM Workshop on Information Sharing & Collaborative
Security, pages 51–60, 2014.

[5] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-

preserving set intersection with quasi-linear complexity. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 95(8):
1366–1378, 2012.

[6] Ivan Damgård and Rune Thorbek. Efficient conversion of secret-shared values

between different fields. IACR Cryptology ePrint Archive, 2008:221, 01 2008.
[7] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection proto-

cols with linear complexity. In International Conference on Financial Cryptography
and Data Security, pages 143–159. Springer, 2010.

[8] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching

and set intersection. In International conference on the theory and applications of
cryptographic techniques, pages 1–19. Springer, 2004.

[9] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Efficient set

intersection with simulation-based security. Journal of Cryptology, 29(1):115–155,
2016.

[10] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-

party private set-intersection. In IACR International Workshop on Public Key
Cryptography, pages 175–203. Springer, 2017.

[11] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled

circuits better than custom protocols? In Proceedings of the 19th Annual Network
and Distributed System Security Symposium, 2012.

[12] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and

trust in electronic communities. In Proceedings of the 1st ACM conference on
Electronic commerce, pages 78–86, 1999.

[13] Christopher Johnson, Mark Badger, David Waltermire, Julie Snyder, and Clem

Skorupka. Guide to cyber threat information sharing. Technical Report SP

800-150, National Institute of Standards and Technology, 2016.

[14] Panos Kampanakis. Security automation and threat information-sharing options.

IEEE Security & Privacy, 12(5):42–51, 2014.
[15] Lea Kissner and Dawn Song. Private and threshold set-intersection. Technical

report, Carnegie-Mellon University, 2004.

[16] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Victor Shoup,

editor, Advances in Cryptology – CRYPTO, pages 241–257, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-31870-5.

[17] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient

batched oblivious PRF with applications to private set intersection. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 818–829, 2016.

[18] Frederick Lah. Are IP addresses “personally identifiable information”? I/S: A
Journal of Law and Policy for the Information Society, 4:681–707, 2008.

11

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://eprint.iacr.org/2020/600

[19] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More Efficient

Constant-Round Multi-party Computation from BMR and SHE. In Proceedings
of the 14th International Conference on Theory of Cryptography, pages 554–581,
2016.

[20] Yehuda Lindell, Benny Pinkas, Nigal P. Smart, and Avishay Yanai. Efficient

Constant-Round Multi-party Computation Combining BMR and SPDZ. Journal
of Cryptology, 32(3):1026–1069, 2019.

[21] Catherine Meadows. A more efficient cryptographic matchmaking protocol for

use in the absence of a continuously available third party. In 1986 IEEE Symposium
on Security and Privacy, pages 134–134. IEEE, 1986.

[22] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages
223–238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-

48910-8.

[23] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set

intersection based on OT extension. ACM Transactions on Privacy and Security
(TOPS), 21(2):1–35, 2018.

[24] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Light-

weight private set intersection from sparse OT extension. In Annual International
Cryptology Conference, pages 401–431. Springer, 2019.

[25] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryp-
tology ePrint Archive, 2005:187, 2005.

[26] David Ross, Jason Shiffer, Tony Dell, William Gibb, and Doug Wilson. Openioc.

https://www.openioc.org/, 2020.

[27] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November

1979. ISSN 0001-0782. doi: 10.1145/359168.359176. URL https://doi.org/10.1145/

359168.359176.

[28] CynthiaWagner, Alexandre Dulaunoy, GérardWagener, and Andras Iklody. Misp:

The design and implementation of a collaborative threat intelligence sharing

platform. In Proceedings of the ACM on Workshop on Information Sharing and
Collaborative Security, pages 49–56, 2016.

[29] Moti Yung. From mental poker to core business: Why and how to deploy secure

computation protocols? In Proceedings of the 22nd ACM Conference on Computer
and Communications Security, pages 1–2, 2015.

12

https://www.openioc.org/
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

	Abstract
	1 Introduction
	2 Background
	2.1 Shamir's Secret Sharing
	2.2 Oblivious Pseudo-Random Functions
	2.3 Paillier Cryptosystem

	3 Protocol Description
	3.1 Protocol Overview
	3.2 Oblivious Pseudo-Random Secret Sharing
	3.3 Strawman Scheme: t-PSI0
	3.4 Faster Scheme: t-PSI
	3.5 Multiple Reconstructors
	3.6 Multiple Key Holders

	4 Security
	5 Evaluation
	5.1 Setup
	5.2 Share Generation
	5.3 Reconstruction
	5.4 Discussion

	6 Related Work
	6.1 Private Set Intersection
	6.2 Over-Threshold Set Operations

	7 Conclusion
	References

