Improving Interactive Instruction: Faculty Engagement Requires Starting Small
and Telling All

BAILEY KACSMAR, University of Waterloo, Canada

Interactive instruction, such as student-centered learning or active learning, is known to benefit student success as well as diversity
in computer science. However, there is a persistent and substantial dissonance between research and practice of computer science
education techniques. Current research on computer science education, while extensive, sees limited adoption beyond the original
researchers. The developed educational technologies can lack sufficient detail for replication or be too specific and require extensive
reworking to be employable by other instructors. Furthermore, instructors face barriers to adopting interactive techniques within their
classroom due to student reception, resources, and awareness. We argue that the advancement of computer science education, in terms
of propagation and sustainability of student-centered teaching, requires guided approaches for incremental instructional changes
as opposed to revolutionary pedagogy. This requires the prioritization of lightweight techniques that can fit within existing lecture
formats to enable instructors to overcome barriers hindering the adoption of interactive techniques. Furthermore, such techniques
and innovations must be documented in the form of computing education research artifacts, building upon the practices of software

artifacts.

1 INTRODUCTION

A traditional lecturing style is a common choice for an instructor preparing for a course, but it is not the only one available.
Active learning techniques are one way to diverge from traditional lecturing that has been found to improve student
engagement and performance [10, 30]. Active learning, generally speaking, encompasses instructional techniques where
the students, or learners, are involved in the learning process. Essentially, active learning is a student-centered practice
where the students are engaged in doing something besides passive listening. Active learning is not a novel development
in educational research, with active learning approaches going back to the early 1900s [32]. For computing education
specifically, active learning approaches go back to the 1990s [3]. However, even given this history, it is not unusual for
computer science classrooms to employ a traditional instructor-based lecturing approach [12]. This is despite advances
in computing education and evidence that lecture-based instruction is a less than optimal teaching technique.

The benefits of student-centered teaching are particularly high during introductory or foundations courses; typically
in the first half of degree programs [15, 29, 34]. Furthermore, research targeting the effectiveness of active learning
for other science disciplines, such as physics and biology, have found active learning to particularly benefit women
and underrepresented minorities [14, 25]. Meanwhile, computer science suffers from attrition rates, accessibility, and
diversity issues [5, 20, 38]. As early as 2007, we have case studies on the effectiveness of active learning for supporting
diversity in computer science [6]. Yet, there remains a dichotomy between computing education research and practice;
where practitioners continue to fall back to conventional lecturing in their classrooms [12, 16-18]. Demographics,
institution type, and professor rank have been found to correspond with different rates of usage for student-centered
practices [12]. Though few instructors report student-centered learning as their primary teaching strategy, many report
using at least one student-centered technique during a course [17] and even small changes towards student-centered
active learning can benefit students [22, 23].

Resistance to change, even beneficial change is understandable. Therefore, when considering the incorporation of
active learning into computer science classrooms, we need to acknowledge the familiarity of the traditional lecture
format. Both instructors and students may feel resistant to changing the format of learning they are used to. Computer
science educators want to ensure that specific techniques, which may require additional work on their part, have

1



Kacsmar

sufficient support to motivate them to administrators. Instructors may also want assurances that employing these
techniques will benefit students and that they can feel confident that their efforts towards implementing techniques will
have the desired effects. Research on active learning techniques, for computer science or otherwise, do not necessarily
provide clear instruction on how to implement these techniques if modifications are required to satisfy the instructor’s
course or curriculum specifications. Active learning techniques for computer science also lack the inclusion of clear
measures for evaluating their effectiveness. Without clear evaluation metrics instructors are left to guess on the
effectiveness based off student evaluations and grades with little intermediate feedback available. Instructors are also
left without a path to clearly show students how deviating from the expected instructional framework can actually be
beneficial to the students’ own goals.

We focus on the accessibility and propagation of interactive computer science education innovations to instructors
and the research community. We refer to the past literature as well as lessons from software engineering and other
research communities to answer how we can practically and effectively increase the adoption of active learning in
computer science classrooms. We propose that a focus on small activities that fit within existing lectures as well as
increased documentation in the form of computing education artifacts for all published computing education innovations
is best suited to helping instructors overcome barriers they face in terms of time, resources, and student perceptions.
Further, through the introduction of artifacts to the computing education community, it will be possible to provide

earlier engagement and training to junior researchers and other newcomers to the community.

2 BARRIERS TO INCORPORATING INTERACTIVE LEARNING

Despite an extensive research literature, there remains a gap between theory and practice for computer science
education. There are active approaches that can apply to teaching any computer science topic, as well as ones that
target specific computer science concepts (such as algorithms [41], artificial intelligence [31, 35], operating systems [22],
logic circuits [21]), or introductory programming [27]. Such a dissonance between literature and practice cannot be
simply attributed to any one factor [12].

There are a number of factors that impact instructors’ motivation. Factors, such as awareness of techniques, time
and effort constraints, available training and mentoring, fit with existing practices, time to cover content, and student
perceptions or resistance of change have all been identified as potential barriers to the adoption of education innova-
tions [17, 40]. These reasons can be summarized as the risks outweighing the rewards. An instructor who is aware of
techniques must invest their time into developing their courses without a clear way to measure their success. Further,
the potential cost can be substantial in terms of student performance and student evaluations. End-of-term course
evaluations play a large role in instructor decisions to continue using unconventional teaching, likely in part due to
concern for student perspectives [16]. Whether the work of researchers is supporting instructors needs and goals has
recently come into question [7]. Although designing adoptable innovations falls on researchers, ultimately what it
means is design innovations that instructors will be willing and able to use. That is, design innovations that faculty can

be convinced to employ.

2.1 Institutional Barriers

Institutional support is beneficial in the propagation of active learning techniques into classrooms. For instance, a
university program where more senior mentors are willing and able to help other faculty develop and grow their active
learning teaching skills. Despite the benefits of training and other institutional resources, it is a reality that not all

instructors have access to such resources. Addressing instructors’ concerns with respect to impacts on their career
2



Improving Interactive Instruction

advancement and time requires institutional change such that efforts to improve student success and engagement are
not punished. Support for time spent on mentoring must also be rewarded. Without mentoring and guidance it is hard
to execute new teaching techniques well and if the execution is done poorly, it will likely fail. Timeslots, labs, and

course distribution are also controlled by institutions, and can prove limiting for diversifying instructional techniques.

2.2 Accessibility

University courses are taught with increasing frequency by non-permanent staff. That is, instead of tenured or tenure
track faculty many courses are taught by adjuncts, grad students, or those in other ‘temporary’ instructor roles [11].
Instructors in these roles may be teaching multiple courses a term across more than one institution with no guarantees
on teaching the same course from term to term or year to year. Some instructors may be teaching a course while trying
to fulfill their degree requirements and preparing for applying to more permanent faculty positions.

While instructors with more permanent positions are able to build up their course repertoire over time, leaving
more opportunities to explore novel teaching techniques, it is harder to build reusable material without this stability.
Adjuncts and other precariously employed instructors may have to consistently build up new material for each course
they teach and be constrained by institutional conventions that do not permit much deviation from lectures. Across
instructors there is high variance in terms of their time, freedom, and security. Thus, to benefit students it is important
to be mindful of such instructor limitations and focus on developing teaching innovations that bridge these inequities

rather than amplifying them.

2.3 Student Perceptions

One of the justifications instructors use for quitting or not trying student-centered interactive learning is concern for
negative student evaluations or student push-back [16]. Both students and instructors can experience drawbacks from
efforts to employ active learning despite the benefits suggested by the literature. Student perspectives, which can come
out through end-of-term evaluations, are used in faculty hiring, promotion, tenure, and salary decisions [1]. These
student evaluations disproportionately negatively affect women and minorities, who are also the ones more likely to
use unconventional instruction [9, 13]. Previous work on computing education has looked at students’ perceptions of
engaging with the material when self direction was required of them [19], students’ perceptions of team evaluation
methods [39], and what factors influence student motivation [33].

In other disciplines, that have investigated student preferences and perceptions, it has been found that active learning
is good for students’ outcomes, but they do not necessarily like it, that is “Students in the active learning condition
reported greater retention of and engagement with the course material but not greater enjoyment when compared to
students in the content review condition” [36]. Further, the ultimate valuation of active learning for students can be as
simple as the return and that “Any activity, be it active, cooperative or traditional, that directly relates to improving
exam performance was the most valued of all” [28]. Thus, student perceptions, and to a degree performance, can be

boosted by addressing their concerns and showing how active learning can help them achieve their goals [4, 8].

3 A FOUNDATION IN SMALL TEACHING

The development of computer science specific variants of generic active learning and documented methods to employ
them can improve accessibility, use, and sustainability. Despite differences in curriculum or program languages,
realistically, all universities have topics and concepts in common that they must teach. There are foundational concepts,

not just in introductory courses, but also in more advanced courses that must be taught regardless of other details.
3



Kacsmar

A university that never taught its computer science students about sorting or never introduced the idea of loops or
abstraction would be setting their students up for failure. Thus, we oppose past concerns that developing concept
specific techniques can limit usage across universities [40].

We advocate for the use of smaller interventions from Small Teaching as a way to slowly integrate interactions into a
course from the beginning [23]. The goals of small teaching include low time requirements (in terms of preparation,
execution, and evaluation) while still being provably beneficial to student engagement and learning. That is, “quick small
active teaching” is a way to help get both instructors and students adjust to the changes in interaction levels in their
courses. Large techniques, with sufficient complexity or targeted at courses rather than concepts, require computing
education researchers to provide details on how to adapt them before they can be useful to other instructors [40]. We

will further discuss a solution to ensuring these details exist in Section 4.

3.1 Small Teaching

In this work, we use the term ‘small teaching’ to encompass activities such as those highlighted by Lang [23]. These
activities include ones where the activity takes between five and ten minutes, may be a one-time intervention in the
course, and only requires a small modification to the student experience or course design. We also include activities in
this work towards the medium or large side, but we emphasize that such activities would require a greater effort on the
part of an instructor, and even further documentation efforts on the part of researchers (see artifacts in Section 4).

An example of an activity that can be used as ‘small teaching’ is the one-minute thesis. A ‘one-minute thesis’ activity
can be done during existing lecture time and only requires the preparation of a prompt on the part of the instructor.
The prompt is generally open ended and has the students write everything they can in response to the prompt, but
within one minute. An instructor can then review these responses to: gauge student understanding, identify gaps, and
then modify their instruction going forward to address any gaps or issues in understanding. As it only takes one minute

of writing, it requires low effort on the part of the student while still generating engagement and providing feedback.

3.2 Supporting Instructors

To demonstrate the importance of starting small for instructors, we invite readers to consider the following educational
experiences from their past. Before anyone first writes an essay or a research paper, they begin with sentences and
paragraphs. Before releasing an application to users, the programmers first learn to build small projects that provide
them with the building blocks they will need to explore and develop larger systems. Computing education instructors at
the university level are generally PhDs with research training, which does not require training as a teacher. Furthermore,
instructors at different career points each face barriers to adopting teaching innovations. Recall that course evaluations
are used in hiring and promotional decisions; affecting sessionals, adjuncts and tenure-track instructors. Tenure-track
research professors may find taking time away from their regular research to learn about teaching innovations may be
too big of a time investment to risk the role research plays in their promotions. Thus, encouraging faculty adoption of
teaching innovations requires balancing the risk and time investment of change against the reward. To tip the scales
towards change, education innovations need to recognize instructors as being computing education students with time
limitations and limited access to external teaching training. If instructors are provided with small guided techniques to
explore, they can develop their own skills much as students would by beginning with small exercises and growing from

there. Computing education instructors deserve the same opportunities to grow their skills as their students.

4



Improving Interactive Instruction

3.3 Supporting Students

It would be remiss to forget that grades do still matter to students and that there are legitimate reasons for that. In a
university or similar facility, in general, students must receive a grade at the end of the course. These students may
require certain grades to satisfy degree requirements or to maintain funding for their studies (e.g., scholarships or
student loans). Some students may be working part-time to fund their studies and only have a limited amount of time
to dedicate to the material in the course (in addition to their other courses). Such students may only be able to spend
enough time to ensure they continue to meet their degree requirements. These are all realities that may outweigh a
student’s motivation to master material and should be considered when determining what strategies to incorporate.

Deviation from what students expect from their classes can result in push back and resistance to the change. Resistance
can be particularly strong if change is introduced part way through the term [4]. Fortunately, student resistance is
not nearly as common as instructors may fear or perceive it to be [4]. Furthermore, resistance can be assessed, and
it can be mitigated. To counter students’ resistance to active learning it is important to start off on the first day with
interaction and an explanation of what students can expect. According to work from Chasteen on helping students
engage with active learning, other than starting from the first day, there are four student concerns you should ensure
you address [4]. First, students want to know how the class works. This includes grading schemes and course content,
but also how class time will be spent. Students want to know how to get a good grade in the course and correspondingly
to understand how the instructor’s style of teaching the course will help them get that grade. Finally, when students are
asked to contribute and interact in the course, they want to know whether their contribution will be valued.

The advantages of countering potential student resistance include: established effectiveness of small teaching that
can be shared with students, low preparation time, low activity time, and can be included from day one of a course.
Instructors wishing to use small techniques can present the student benefits on the first day when explaining the course
syllabus and other information about how the course is run. They can begin the course with a small activity, for instance,
a prompt of “What do you think you will learn in this course"? The instructor can demonstrate student contributions
matter by addressing these responses as well as whether some suggestions can be incorporated into the course now
that the instructor knows there is interest. Such small first day activities can set the tone for the course, show students
the instructor is open to their input, and open the door to more complex activities later in the term without being
completely unexpected. Motivation can be given to students by explaining to them that there is evidence that doing
these activities will help their grades, but ultimately students will be more responsive to a direct connection to their

grades. A direct benefit can come in the form of giving students bonus grades for participating in these activities [4, 36].

4 ARTIFACTS FOR ACCESSIBILITY

In an ideal world, there would be the creation of a collective database of small easily included active learning techniques
available to instructors. While some high school instructors may have sources via their school divisions as well as online
resources [24], this is not necessarily the case for university instructors, who additionally may lack training as educators.
Across the globe countless instructors are teaching similar courses with similar material. It is possible for precise
activities to be described and detailed in terms of specific course content and still be useful across numerous university’s
courses. Barring such a database, there can at least be an increase in innovation documentation in computing education
research focused on reusability. In terms of human efforts, the creation and review of artifacts shifts time and effort

away from instructors, but onto researchers. Researchers must put in additional effort to ensure that their innovation is



Kacsmar

accessible to others for replication. However, this extra effort also benefits researchers by facilitating replication studies

and the information needed to build upon colleagues’ work, just as in other areas of computer science.

4.1 Research Artifacts in Computer Science

In recent years there has been a rising prioritization of making computing research more reproducible and accessible
through recognizing and reviewing research artifacts. Research artifacts build on the idea of software artifacts which
can include mock-ups and other components generated during the design process of a software system as well as
documentation and demos for the software itself. Separate artifact reviews for accepted papers or for replication studies
have been added in software engineering at the International Conference on Software Engineering (ICSE)?, in operating
systems at Operating Systems Design and Implementation (OSDI)?, in security at USENIX Security®, and in privacy at
the Privacy Enhancing Technologies Symposium (PETS)?. Across the above research communities, we see a breadth of
artifacts. Types of artifacts evaluated by at least one of the above venues include: software, data sets, survey results,
test suites, mechanized proofs, source code, scripts for data processing or simulations, formal specifications, build

environments, hardware, and frameworks (tools and services illustrating new approaches usable in different contexts).

4.2 Computer Science Education Artifacts

Within the computing education community, SIGCSE-TS includes a conference track for Nifty Assignments® that
requests computer science assignments to be submitted as well as experience report submissions. Unlike research paper
artifacts, however, these are distinct from computer science education papers accepted to the conference. Thus, they
serve an important, but different contribution to the computing education community than research artifacts. In our
call for computing education artifacts we are focusing on the need to document education innovations and studies that

can be used by instructors and other researchers to improve the community at large.

Artifact Specifications. Similar to other computer science artifacts, computing education artifacts are not limited to
just one form. Artifacts can include: datasets, interactive activities, software applications, activity design strategies, and
teaching methods, to name a few. The priority in calling for artifacts is not to limit what can be an artifact. Instead,
our call for artifacts is to advocate for usability and accessibility by rewarding the documentation and disclosure of
components discussed and developed for a teaching innovation paper. For researchers and educators that hope to have
education innovations adopted by instructors, we highlight the following requirements: preparation or design time, in
class duration, student motivation, computing or other resource requirements, and general documentation in terms of
instructions for use or fidelity of the implementation.

When instructors other than the original researchers attempt to use a technique in their classrooms a specific
measurement for successful use is beneficial. This measurement targets the fidelity of the implementation and is used
to validate that the instructor has delivered the technique as it was intended [37, 40]. Without such validation metrics,
there is less reassurance that the motivating goals (e.g., in terms of student success), can and will be met.

Further, artifacts must be hosted in a publicly accessible format and location to be useful to both researchers and

instructors. During the submission stage, the current solution in other venues in computer science (ICSE, OSDI, USENIX

!https://conf.researchr.org/track/icse-2021/icse-2021- Artifact- Evaluation#Call-For- Artifact-Submissions
https://www.usenix.org/conference/osdi20/call-for-artifacts
Shttps://www.usenix.org/conference/usenixsecurity21/artifact-evaluation-information
“https://petsymposium.org/artifacts.php

Shttp://sigese2022.sigese.org/authors/nifty/


https://conf.researchr.org/track/icse-2021/icse-2021-Artifact-Evaluation#Call-For-Artifact-Submissions
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/usenixsecurity21/artifact-evaluation-information
https://petsymposium.org/artifacts.php
http://sigcse2022.sigcse.org/authors/nifty/

Improving Interactive Instruction

Security, PETS) is to have the authors host their artifact on publicly accessible author chosen systems such as GitHub or
institutional websites. Depending on the size of the venue soliciting these artifacts, once accepted the venue can either
reference links to these author-hosted artifacts alongside the published papers or host the artifacts on a conference

server. Hosting the artifacts is obviously more resource intensive but does ensure a stronger sense of future accessibility.

Artifact Reviewers. To have artifacts reviewed requires an additional reviewing committee. Such a committee is
necessary to ensure potentially already over-strained program committees are not further overextended. Artifact
committees at other venues in computer science (ICSE, OSDI, USENIX Security, PETS), have invited more junior
researchers to these committees, including having senior PhD students and post-docs as co-chairs. Junior researchers
are an excellent choice for evaluating artifacts for usability as their levels of expertise may have greater similarity to
instructors new to using teaching innovations than more senior researchers. Thus, the junior researchers may be able
to identify gaps that would inhibit reusability that more senior researchers would fill in using knowledge from their
own experiences. If the junior researchers find an innovation inaccessible, then it may not be ready for instructors who

may have even less experience or familiarity with computer science education innovations.

4.3 CSE Research Community Engagement

The geographic diversity of the CSE research community, specifically that of SIGCSE, finds limited representation
outside of North America [2]. This limitation is also found with respect to junior scholar participation as evaluated
through their involvement in doctoral consortia. While Doctoral consortia (e.g., at ITiCSE and ICER) provide graduate
students with opportunities to share their work, they previously required in-person attendance which may have
contributed to the primarily North American based participation [2, 26]. Unlike doctoral consortia, artifact reviewing
can be done entirely through online participation without loss of engagement. Thus, our proposal while focused on
propagation of teaching innovations to instructors and other researchers, additionally provides a non-geographic
dependent engagement opportunity for researchers new to the CSE research community to participate. Further, artifact
reviewing provided junior scholars with additional networking opportunities with colleagues as well as academic
training in the form of reviewer experience. Encouraging junior researchers participation on artifact committees
benefits the community by having these artifacts evaluated for usability, and providing training and experience to

junior researchers.

5 CONCLUSIONS

An all or nothing treatment of active learning, as a sort of pedagogical revolution, is inaccessible to the majority of
instructors, and thus, cannot benefit students. Even less revolutionary ideas, such as a specific way to teach a specific
concept with a specific technology can still have a lot of overhead that can be overwhelming or inaccessible. Educational
innovations must add clear instructions on how to adapt them, if necessary, to different contexts such as class size, time,
and content. Instructors must be provided with detailed instructions and measures for integrating and evaluating the
inclusion of novel teaching techniques in their classrooms. Without support, and given the potential consequences
from negative student evaluations, it is understandable that instructors fall back to the safety of traditional lecturing.

In this short paper, we highlighted the need for a prioritization of computing education artifacts, and in particular
for small teaching techniques, to support instructors in developing their own knowledge and understanding without
requiring them to work through the bountiful set of literature. By designing education innovations with these cor-
responding prioritizations, that include detailed instructions for teaching specific computer science topics, we can

7



Kacsmar

improve instructor adoption. Conferences and other research venues have the power to support students by driving

change and improving the accessibility of active learning techniques for computer science educators through rewarding

researchers’ efforts in producing reusable teaching innovations. Change requiring institutional support is a long-term

process, however, through starting small and telling all, in the form of small teaching and artifacts, the computing

education community can begin to address barriers to adoption with greater immediacy.

REFERENCES

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

=
&

[19]

[20]

Susan A Basow and Julie L Martin. 2012. Bias in student evaluations. In M. E. Kite (Ed.), Effective evaluation of teaching: A guide for faculty and
administrators. Society for the Teaching of Psychology, 40-49.

Brett A. Becker, Amber Settle, Andrew Luxton-Reilly, Briana B. Morrison, and Cary Laxer. 2021. Expanding Opportunities: Assessing and Addressing
Geographic Diversity at the SIGCSE Technical Symposium. ACM, New York, NY, USA, 281-287.

Stefan Biffl and G Thomas. 1998. Preparing students for industrial teamwork: a seasoned software engineering curriculum. IEEE Proceedings-Software
145, 1 (1998), 1-11.

Stephanie Chasteen. 2017. How do I help students engage productively in active learning classrooms. posted to https://www. physport.
org/recommendations/Entry. cfm (2017).

J. McGrath Cohoon. 2001. Toward Improving Female Retention in the Computer Science Major. Commun. ACM 44, 5 (may 2001), 108-114.
James P. Cohoon. 2007. An Introductory Course Format for Promoting Diversity and Retention. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education (Covington, Kentucky, USA) (SIGCSE °07). ACM, New York, NY, USA, 395-399.

Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Banaszkiewicz. 2019. Research This! Questions That Computing Educators
Most Want Computing Education Researchers to Answer. In Proceedings of the 2019 ACM Conference on International Computing Education Research
(Toronto ON, Canada) (ICER ’19). ACM, New York, NY, USA, 259-267.

Rutwa Engineer, Ayesha Naeem Syeda, and Bogdan Simion. 2021. A Qualitative Study of Group Work and Participation Dynamics in a CS2 Active
Learning Environment. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE °21). ACM, New York, NY, USA, 25-31.

Yanan Fan, Laura ] Shepherd, Eve Slavich, David Waters, M Stone, R Abel, and Emma L Johnston. 2019. Gender and cultural bias in student
evaluations: Why representation matters. PloS one 14, 2 (2019), €0209749.

Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active
learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences 111, 23 (2014),
8410-8415.

Judith M Gappa. 2008. Today’s majority: Faculty outside the tenure system. Change: The Magazine of Higher Learning 40, 4 (2008), 50-54.

Scott Grissom, Sue Fitzgerald, Renée McCauley, and Laurie Murphy. 2017. Exposed! CS Faculty Caught Lecturing in Public: A Survey of Instructional
Practices. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17).
ACM, New York, NY, USA, 261-266.

Scott Grissom, Renée Mccauley, and Laurie Murphy. 2017. How Student Centered is the Computer Science Classroom? A Survey of College Faculty.
ACM Trans. Comput. Educ. 18, 1, Article 5 (Nov. 2017), 27 pages.

David C Haak, Janneke HilleRisLambers, Emile Pitre, and Scott Freeman. 2011. Increased structure and active learning reduce the achievement gap
in introductory biology. Science 332, 6034 (2011), 1213-1216.

John P Holdren and Eric Lander. 2012. Engage to excel: Producing one million additional college graduates with degrees in science, technology,
engineering, and mathematics. President’s Council of Advisors on Science and Technology (2012).

Christopher Lynnly Hovey and Lecia Barker. 2020. Faculty Adoption of CS Education Innovations: Exploring Continued Use. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE "20). ACM, New York, NY, USA, 570-576.
Christopher Lynnly Hovey, Lecia Barker, and Margaret Luebs. 2019. Frequency of Instructor- and Student-Centered Teaching Practices in
Introductory CS Courses. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
ACM, New York, NY, USA, 599-605.

Christopher Lynnly Hovey, Kathleen J. Lehman, and Tiffani Riggers-Piehl. 2020. Linking Faculty Attitudes to Pedagogical Choices: Student-Centered
Teaching in Introductory Computing Classes. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland, OR,
USA) (SIGCSE °20). ACM, New York, NY, USA, 584-590.

Ville Isométtonen and Ville Tirronen. 2013. Teaching Programming by Emphasizing Self-Direction: How Did Students React to the Active Role
Required of Them? ACM Trans. Comput. Educ. 13, 2, Article 6 (jul 2013), 21 pages.

Amanpreet Kapoor and Christina Gardner-McCune. 2018. Considerations for Switching: Exploring Factors behind CS Students’ Desire to Leave a
CS Major. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE
2018). ACM, New York, NY, USA, 290-295.



Improving Interactive Instruction

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

Ville Karavirta, Rolf Lindén, Einari Kurvinen, and Mikko-Jussi Laakso. 2016. Interactive Exercises for Teaching Logic Circuits. ACM, New York, NY,
USA, 101-105.

Michael S. Kirkpatrick and Samantha Prins. 2015. Using the Readiness Assurance Process and Metacognition in an Operating Systems Course. In
Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education (Vilnius, Lithuania) (ITiCSE ’15). ACM, New
York, NY, USA, 183-188.

James M Lang. 2016. Small teaching: Everyday lessons from the science of learning. John Wiley & Sons.

Mackenzie Leake and Colleen M Lewis. 2017. Recommendations for designing CS resource sharing sites for all teachers. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. 357-362.

Mercedes Lorenzo, Catherine H Crouch, and Eric Mazur. 2006. Reducing the gender gap in the physics classroom. American Journal of Physics 74, 2
(2006), 118-122.

Stephanie Lunn, Maira Marques Samary, and Alan Peterfreund. 2021. Where is Computer Science Education Research Happening? ACM, New York,
NY, USA, 288-294.

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Giannakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James
Scott, Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Literature Review. In Proceedings Companion of the 23rd
Annual ACM Conference on Innovation and Technology in Computer Science Education (Larnaca, Cyprus). ACM, New York, NY, USA, 55-106.
Patricia L Machemer and Pat Crawford. 2007. Student perceptions of active learning in a large cross-disciplinary classroom. Active learning in
higher education 8, 1 (2007), 9-30.

Dan Maclsaac. 2015. What research says about effective instruction in undergraduate science and engineering (2015). The Physics Teacher 53, 3
(2015), 190-190.

Joel Michael. 2006. Where’s the evidence that active learning works? Advances in physiology education 30, 4 (2006), 159-167.

Keith O’Hara, Douglas Blank, and James Marshall. 2015. Computational notebooks for Al education. In The Twenty-Eighth International Flairs
Conference. Florida Artificial Intelligence Research Society Conference.

PK Rangachari. 2007. Back to the future? Active learning of medical physiology in the 1900s. Advances in physiology education 31, 4 (2007), 283-287.
Merilin Sade, Reelika Suviste, Piret Luik, Eno Tonisson, and Marina Lepp. 2019. Factors That Influence Students’ Motivation and Perception of
Studying Computer Science. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE
’19). ACM, New York, NY, USA, 873-878.

Susan Singer and Karl A Smith. 2013. Discipline-based education research: Understanding and improving learning in undergraduate science and
engineering. Journal of Engineering Education 102, 4 (2013), 468-471.

Sameer Singh and Sebastian Riedel. 2016. Creating interactive and visual educational resources for ai. In Thirtieth AAAI Conference on Artificial
Intelligence.

C Veronica Smith and LeeAnn Cardaciotto. 2011. Is active learning like broccoli? Student perceptions of active learning in large lecture classes.
Journal of the Scholarship of Teaching and Learning 11, 1 (2011), 53-61.

Marilyne Stains and Trisha Vickrey. 2017. Fidelity of implementation: An overlooked yet critical construct to establish effectiveness of evidence-based
instructional practices. CBE—Life Sciences Education 16, 1 (2017), rm1.

C Stephenson, A Derbenwick Miller, C Alvarado, L Barker, V Barr, T Camp, C Frieze, C Lewis, E Cannon Mindell, L Limbird, et al. 2018. Retention
in Computer Science Undergraduate Programs in the US: Data Challenges and Promising Interventions. New York, NY. ACM (2018).

Anya Tafliovich, Andrew Petersen, and Jennifer Campbell. 2016. Evaluating Student Teams: Do Educators Know What Students Think?. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). ACM, New York, NY,
USA, 181-186.

Cynthia Taylor, Jaime Spacco, David P. Bunde, Zack Butler, Heather Bort, Christopher Lynnly Hovey, Francesco Maiorana, and Thomas Zeume.
2018. Propagating the Adoption of CS Educational Innovations. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (Larnaca, Cyprus). ACM, New York, NY, USA, 217-235.

J. Angel Velazquez-Tturbide. 2013. An Experimental Method for the Active Learning of Greedy Algorithms. ACM Trans. Comput. Educ. 13, 4, Article
18 (nov 2013), 23 pages.



	Abstract
	1 Introduction
	2 Barriers to Incorporating Interactive Learning
	2.1 Institutional Barriers
	2.2 Accessibility
	2.3 Student Perceptions

	3 A Foundation in Small Teaching
	3.1 Small Teaching
	3.2 Supporting Instructors
	3.3 Supporting Students

	4 Artifacts for Accessibility
	4.1 Research Artifacts in Computer Science
	4.2 Computer Science Education Artifacts
	4.3 CSE Research Community Engagement

	5 Conclusions
	References

