Human-Centered Privacy in Machine Learning

The Plan

- Challenges of ensuring security and privacy for ML
- How we design and evaluate security and privacy for ML
- Why "Human-Centered"

Why Privacy and ML?



Beyond Data

Google and Mastercard Cut a Secret Ad Deal to Track Retail Sales

Google found the perfect way to link online ads to store purchases: credit card data

By Mark Bergen and Jennifer Surane

August 30, 2018, 3:43 PM EDT Updated on August 31, 2018, 12:40 PM EDT

Home Depot didn't get customer

consent before sharing data with

washingtonpost.com

Now for sale: Data on your mental health

Drew Harwell

These retailers share customer data with Facebook's owner. Customers may not have been told | CBC News

Thomas Daigle · CBC News · Posted: Feb 07, 2023 4:00 AM EST | Last |

Facebook's owner, privacy watchdog

finds | CBC News

Catharine Tunney · CBC News · Posted: Jan 26, 2023 9:53 AM

Updated: January 27

Double-double tracking: How Tim Hortons knows where you sleep, work and vacation

James McLeod ☑ ③ June 15, 2020 In: Canada Privacy ② 0 🔥 1,169 📕 11 min read

Beyond Data as a Concept

Adobe's new terms of service aren't the Google and Mastercam Deal to Tree

Google found the card data

By Mark Bergen and Jennife August 30, 2018, 3:43 PM ED

Home Depot consent befol Facebook's ol finds | CBC Ne

Catharine Tunney · CBC Ne Updated: January 27

The reaction from Adobe's problem - it's the trust customers to a small update highlights the growing lack of faith surrounding big tech companies and their AI tools.

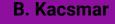
By Jess Weatherbed, a news writer focused on creative industries, computing, and By Jess weatherbed, a news writer rocused on creative industries, computintened outure. Jess started her career at TechRadar, covering news and hardware reviews.

Jun 7, 2024, 1:37 PM MDT

a commission. See our ethics statement.

and vacation

Creatives are fearful of how Adobe's adoption of generative AI will impact their Creatives are fearful of how Adobe's adoption of generative AI will impact t privacy and rights over their work. Illustration by Haein Jeong / The Verge In: Canada Privacy 🗪 0 🔥 1,169 📕 11 min read



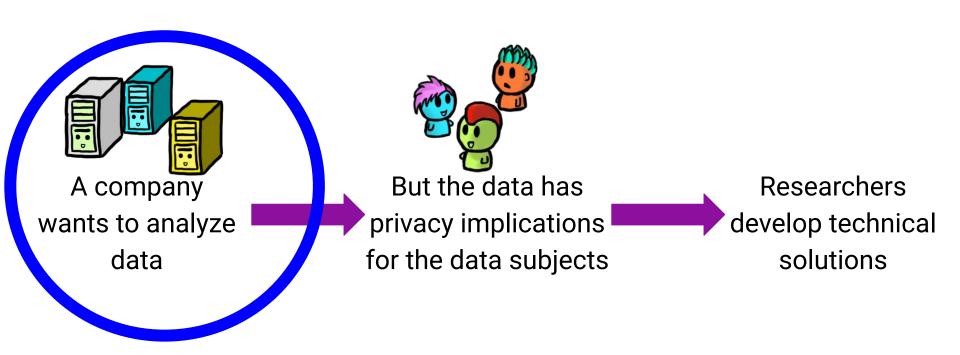
ental

Understanding the Challenge:

Privacy and ML?

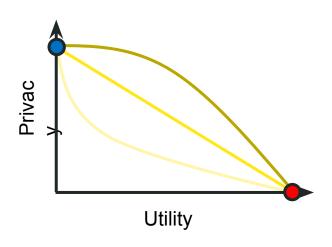
What makes this hard? What's the risk?

Why Privacy and ML?



The Privacy-Utility trade-off

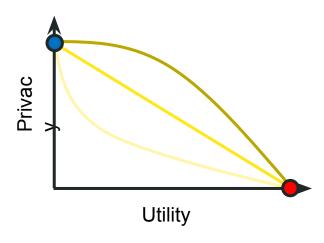
 Given any metric for privacy and for utility, they are usually at odds:



- Q: How do you design a system that provides maximum utility?
- Q: How do you design a system that provides maximum privacy?
- Designing a system that provides a good privacy-utility trade-off is hard!

The Privacy-Utility trade-off

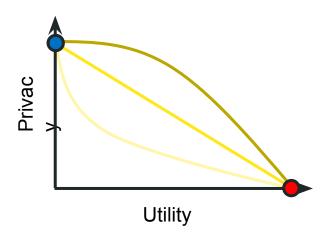
 Given any metric for privacy and for utility, they are usually at odds:



- How do you design a system that provides maximum utility?
 - You design it without privacy in mind
- How do you design a system that provides maximum privacy?
 - ..?
- Designing a system that provides a good privacy-utility trade-off is hard!

The Privacy-Utility trade-off

 Given any metric for privacy and for utility, they are usually at odds:

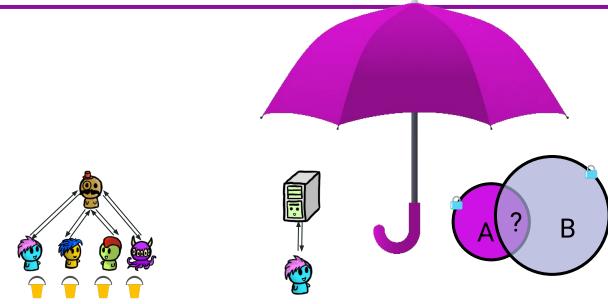


- How do you design a system that provides maximum utility?
 - You design it without privacy in mind
- How do you design a system that provides maximum privacy?
 - You don't design it
- Designing a system that provides a good privacy-utility trade-off is hard!

Private Computation

Balancing Privacy and Utility

Private Computations



Private Machine Learning

Private Query Processing

Private Set Intersection

A C B

Multiparty Computations

B. Kacsmar

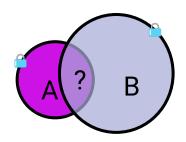
12

Private Computations Class

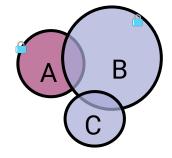
Define, **what** is being protected, from **whom**, and under what **conditions** this protection will hold.

Private Machine Learning

Private Query Processing



Private Set Intersection



Multiparty Computations

Technical Guarantees Types

- Statistical
- Computational
- Information Theoretical

Quantifying Privacy: Theoretical Notions

- **Syntactic** notions of privacy: these are computed on the leaked or released data. They are data dependent
 - K-anonymity, I-diversity, t-closeness, etc
- Semantic notions of privacy: these are computed on the data release mechanism itself, and they hold regardless of the data (data independent)
 - Mostly Differential Privacy

Quantifying Privacy: Empirical Notions

- The performance of an **inference attack** e.g., the attacker error, accuracy, true positive rate, false positive rate, etc
- Can provide an upper bound on privacy

Quantifying Privacy versus Security

Westin's (1967)

An entity's **ability to control** how, when, and to what extent personal information about it is communicated to others

For privacy, focus on the harms (consequences) caused by privacy violations.

Harms from Privacy Violations

Financial

Physical

Targeted Ads

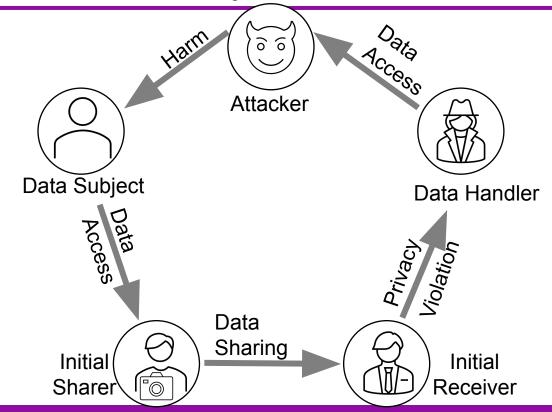
Social

Legal Prosecution

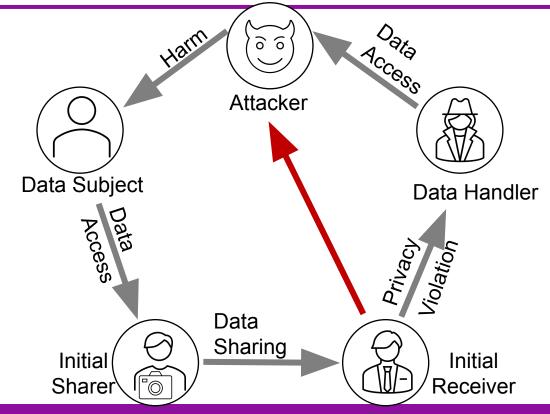
Mental

Mass Surveillance

Privacy Violation Life-Cycle



Privacy Violation Life-Cycle



Adversarial Thinking

- Think like an adversary to understand the vulnerabilities of a system and develop protection techniques.
- When designing inference attacks, we also apply Kerckhoff's principle (or Shannon's maxim), adapted to privacy

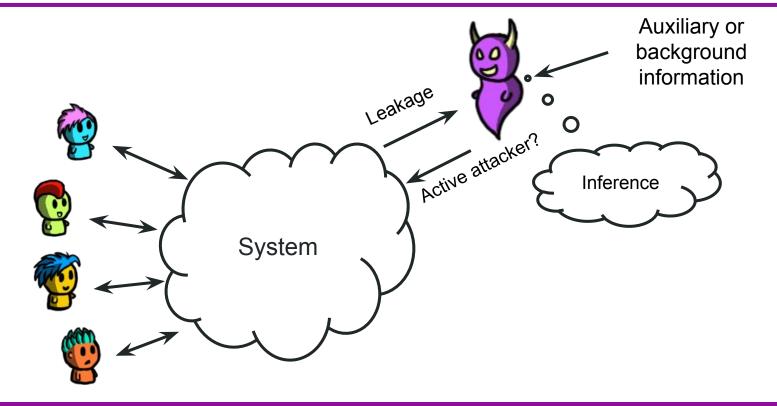
Adversarial Thinking

- Think like an adversary to understand the vulnerabilities of a system and develop protection techniques.
- When designing inference attacks, we also apply Kerckhoff's principle (or Shannon's maxim), adapted to privacy

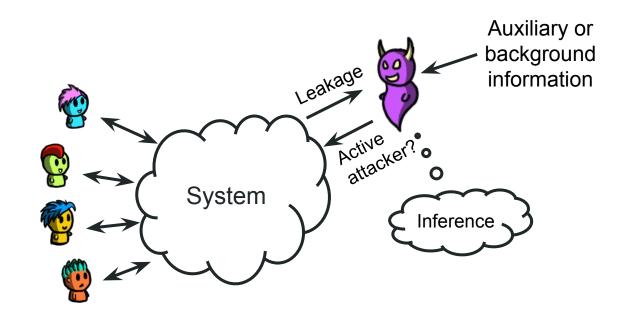
Assume the adversary knows how the system works

- There are **no hidden parameters** other than the users' data
- The adversary can even know some rough distribution

What are inference attacks?

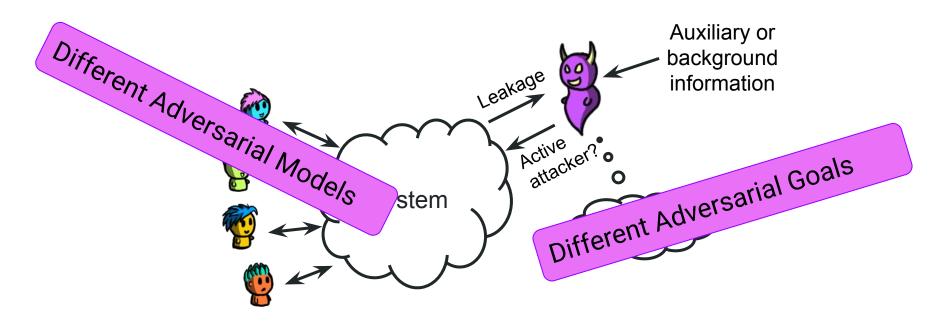


What are inference attacks?



Goal: Learn something (non-trivial) and privacy sensitive from the system

What are inference attacks?



Goal: Learn something (non-trivial) and privacy sensitive from the system

Inference Attacks: Goals and Abilities

Goals:

- Infer data
- Infer a property of the data
- Infer the presence (membership) of some data
- Infer the behavior of a user
- Infer some attributes of a data sample
- Infer dependencies among the data
- 0 ...

Inference Attacks: Goals and Abilities

Goals:

- Infer data
- Infer a property of the data
- Infer the presence (membership) of some data
- Infer the behavior of a user
- Infer some attributes of a data sample
- Infer dependencies among the data
- 0 ...

Abilities:

- Statistical tools (estimation theory, detection theory, maximum likelihood, Bayesian inference...)
- Combinatorics
- Heuristics
- Machine learning
- O ...

Designing a System Aware of Inference Attacks

For any system that relies on users' data, there are two goals:

- **Utility:** Design a system that provides benefits to its users and the service provider
- Privacy: Design a system that provides protection against inference attacks

Q: What are "utility" and "privacy"? How do we "measure" them?

Designing a System Aware of Inference Attacks

For any system that relies on users' data, there are two goals:

- **Utility:** Design a system that provides benefits to its users and the service provider
- Privacy: Design a system that provides protection against inference attacks

Q: What are "utility" and "privacy"? How do we "measure the complicated...

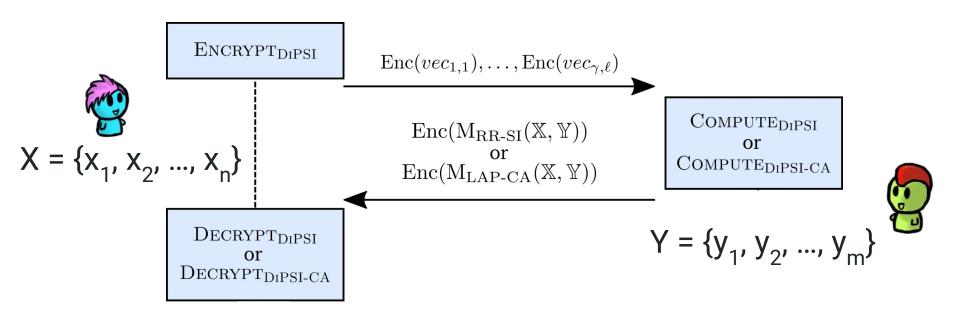
Building Blocks for Private Machine Learning:

What are we protecting and how?

A Private Computation? Cryptography!

$$Y = \{y_1, y_2, ..., y_m\}$$

Private Set Intersection



Kacsmar Khurram, Lukas, Norton, et al. "Differentially private two-party set operations." In 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 390-404. IEEE, 2020.

Private Computation and Machine Learning?

Training Data

Models

Inferences/Outputs

Define, what is being protected, from who, and under what conditions this protection will hold.

Private Computation and Machine Learning?

Training Data Models Inferences/Outputs

Unintentional Leakage
Leakage

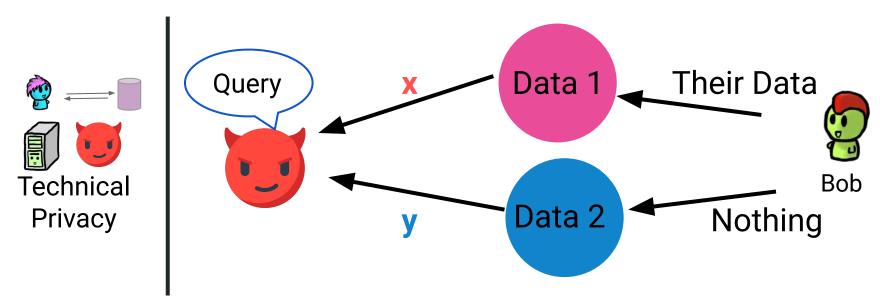
Define, **what** is being protected, from **who**, and **under what conditions** this protection will hold.

Private Computation and Machine Learning?

Inferences/Outputs Models **Training Data** Leakage Unintentional Intentional Leakage **Data Subject Data Owner Access Control**

Define, **what** is being protected, **from who**, and under what **conditions** this protection will hold.

Technical Privacy: Differential Privacy Intuition



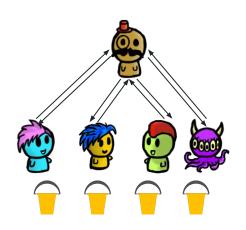
Define, **what** is being protected, from **who**, and under what **conditions** this protection will hold.

Differential Privacy and Machine Learning

- DP-SGD
- Individualized Differential Privacy (PATE)
- More...

However, still <u>require expertise</u> for deployment

Distribution of Trust



Federated Learning PLUS something

- Distribution alone is not private
- SMPC is...expensive
- But...

Not putting all the eggs in one basket, will always have appeal.

Challenge:

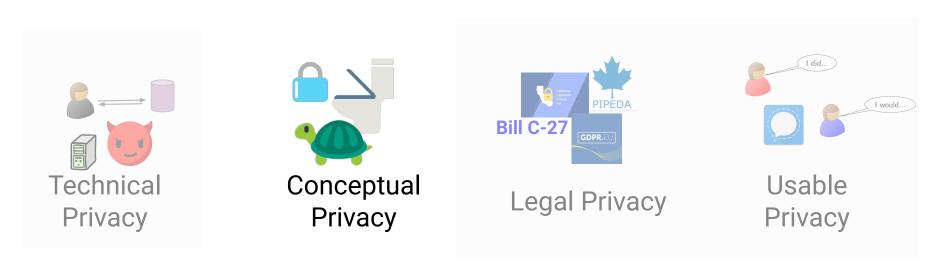
Is it enough? What about the other vectors...

Challenge:

Is it enough? What about the other vectors...

Consent and Communication

A Wider View of Technical Privacy



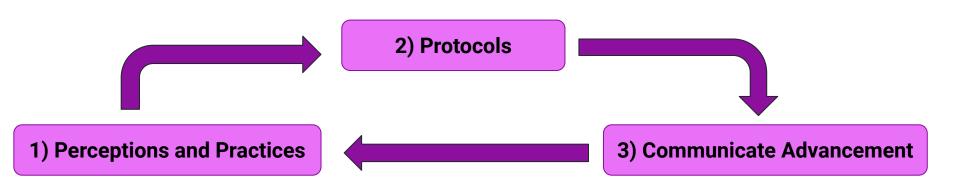
Understanding privacy notions and behaviours, right to privacy, and privacy expectations

M. Oates, et al. Turtles, locks, and bathrooms: Understanding mental models of privacy through illustration." Proceedings on Privacy Enhancing Technologies 2018.

Why Private Computation?

In what ways does private computation matter to people?

Human-Centered Design



"...that aims to make systems usable and useful by **focusing on the users, their needs and requirements**, ... counteracts possible adverse effects of use..." - ISO 9241-210:2019(E)

Implications of Sharing Structures

<u>Disambiguate</u> Third Parties

PetSmart's <u>privacy policy</u> states: "We may share the information we collect with companies that provide support services to us."

- Current systems contains insufficient information to support preferences impacted by <u>sharing type</u>
- Privacy <u>preferences fluctuate</u> with any change to context
- Number of parties, trusted parties, purpose, etc. all influence acceptability, <u>regardless of technical privacy</u>

Kacsmar, Tilbury, Mazmudar, Kerschbaum. Caring about Sharing: User Perceptions of Multiparty Data Sharing. USENIX Security 2022

Perceptions and Expectations

- What do data subjects <u>understand</u>?
- How is a data subject's <u>willingness to share</u> impacted?
- How do data subjects perceive the <u>risks</u>?

What they "need"

Build towards those attributes

Kacsmar, Duddu, Tilbury, Ur, and Kerschbaum. Comprehension from Chaos: Towards Informed Consent for Private Computation. 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS).

The Scenarios

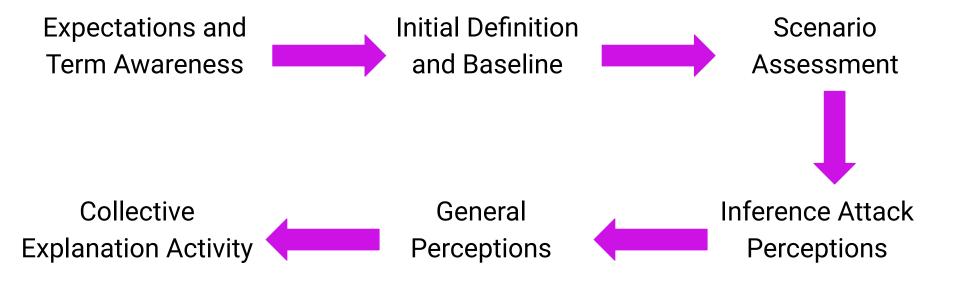
Wage Equity Census Analysis Ad Conversion Contact Discovery

Contact Discovery Conceptual Example

The app wants to **determine the common contacts** between the new user and the existing users via...

- ...the new user shares all their contact information with the social media app.
- ... the new user shares a modified version of their contact information...such that the social media app does not learn non-users...thus, this means...

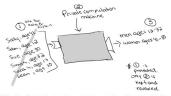
The Interview



Participant Comprehension and Expectations

Second Attempt

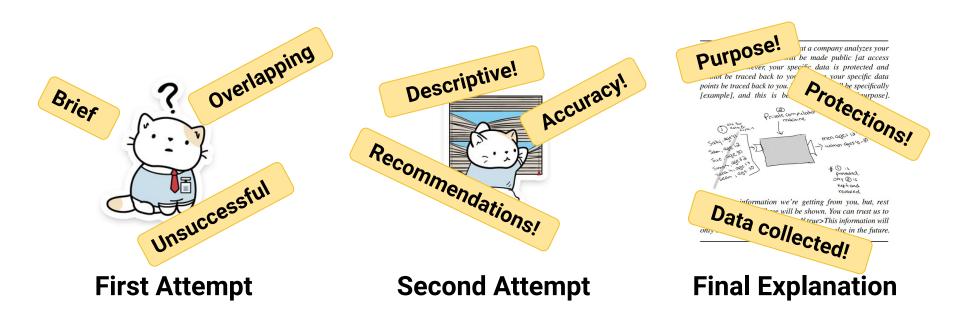
Secure computation is a way that a company analyzes your data. The final analysis will be made public [at access location]. However, your specific data is protected and cannot be traced back to you nor can your specific data points be traced back to you. The analysis will be specifically [example], and this is being done because [purpose].



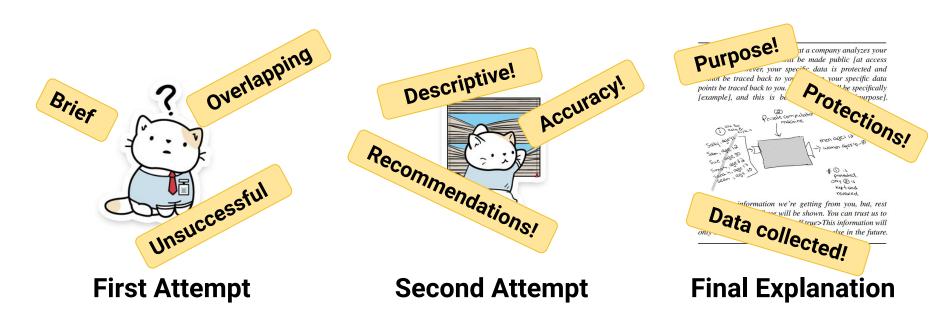
This is the information we're getting from you, but, rest assured, only Part Three will be shown. You can trust us to keep your information private. < If true>This information will only be used for this project and nothing else in the future.

Final Consensus

Participant Comprehension and Expectations



Participant Comprehension and Expectations



Unconcerned with details of the mechanism, impact matters

Impact of Private Computation

"...they're trying to make it sound a little bit better" (P19).

"...it feels a little bit more protected that way" (P12)

Bounded Impact of Private Computation

Intentions Matter Divulge the Details

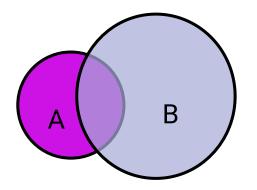
Regulate the Restrictions

Consent Above All

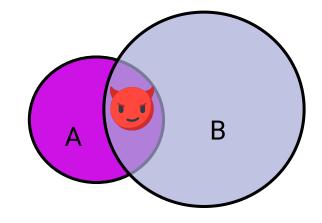
"At the end of the day, they're still like learning specific things about me" (P7)

Awareness of Unique Threat Models

Alice



Contact Discovery

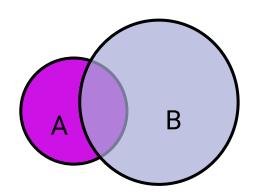


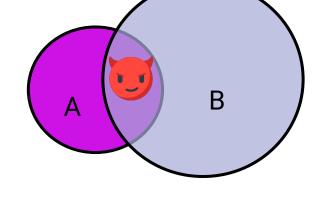
Real Identity Connected

Joins Social App

Awareness of Unique Threat Models

Alice





Joins Social App

Contact Discovery

Real Identity Connected

There exist, and will continue to exist risks that cannot be regulated by technology

Takeaways

- Protections provided by protocols and constructions do not encompass the full range of risks experienced by individuals in society
- Privacy mitigation techniques are a treatment and not a cure for data privacy concerns
- People find private computation plausible, but they care about the context, not the math

Takeaways

- Protections provided by protocols and constructions do not encompass the full range of risks experienced by individuals in society
- Privacy mitigation techniques are a treatment and not a cure for data privacy concerns
- People find private computation plausible, but they care about the context, not the math

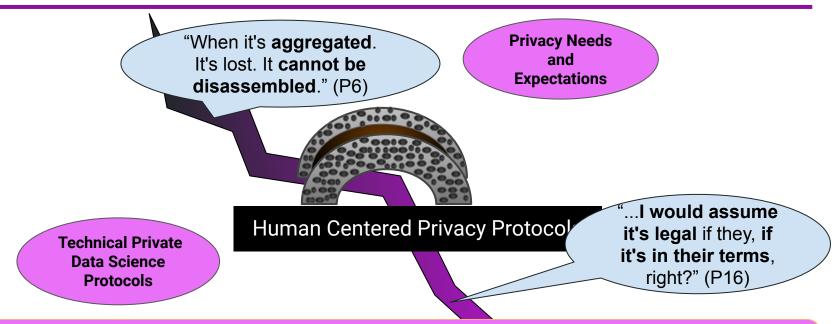
People can reason about private computation; let them.

Thanks!

Bonus Slides

Caring about sharing...

Human Centered Technical Privacy Solutions



Goal: Determine how to best <u>develop technical protocols</u> such that they <u>provide meaningful privacy guarantees</u> to the subjects of the data.

Towards Privacy by Design, Core Tenets

- User centric
- Embedding privacy into the design
- Having privacy as the default configuration
- Ensuring privacy across the whole software life-cycle

Build out Structures for North America

- How do companies share data?
- Who do they share it with?
- Who are the companies?
- When do they share it?
- What do they share?

The Canadian tech company that changed its mind about using your tax return to sell stuff | CBC Radio

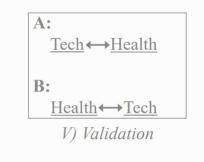
CBC Radio · Posted: Feb 23, 2020 4:00 AM EST | Last Updated: February 23, 2020

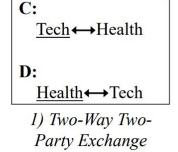
What happens to your data when a company dies? - The Parallax

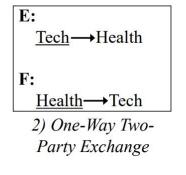
Dan Tynan

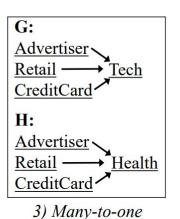
Kacsmar, Tilbury, Mazmudar, Kerschbaum. Caring about Sharing: User Perceptions of Multiparty Data Sharing. USENIX Security 2022

Types of Multiparty Data Sharing

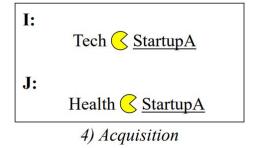








Exchange



5) Merger then acquisition

 $X \rightarrow Y$: X provides data to Y $X \leftrightarrow Y$: X and Y provide data to each other $X \subseteq Y$: X acquires Y

(X+Y): X merges with Y

 \underline{X} : scenario indicated you are a user of X

Research Questions

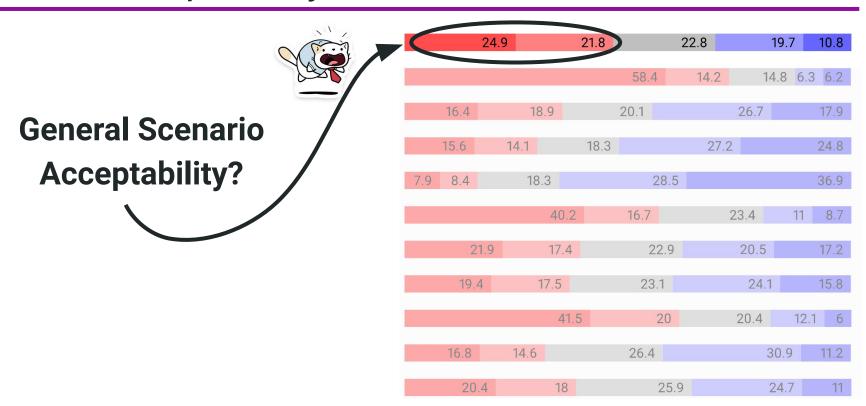
- RQ1: How does the overall acceptability vary across different types of multiparty data sharing?
- RQ2: How does acceptability vary in multiparty data sharing for different user controls (consent, purpose, retention)?

Survey Overview

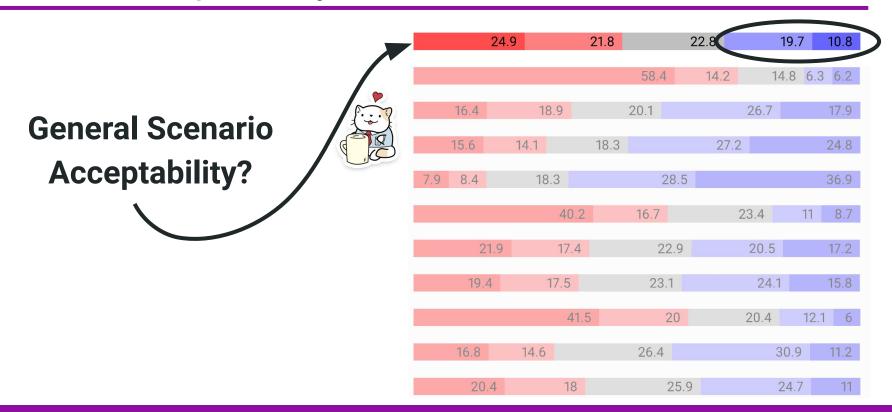
- 1025 responses through SurveyMonkey in March 2021
- Final participant set is N = 916
- Each receives: 1 of 12 scenarios and a series of questions corresponding to user controls
- Use a five-point semantic differential scale:

"Completely Unacceptable", "Somewhat Unacceptable", "Neutral", "Somewhat Acceptable", "Completely Acceptable"

Overall Acceptability Across Scenarios



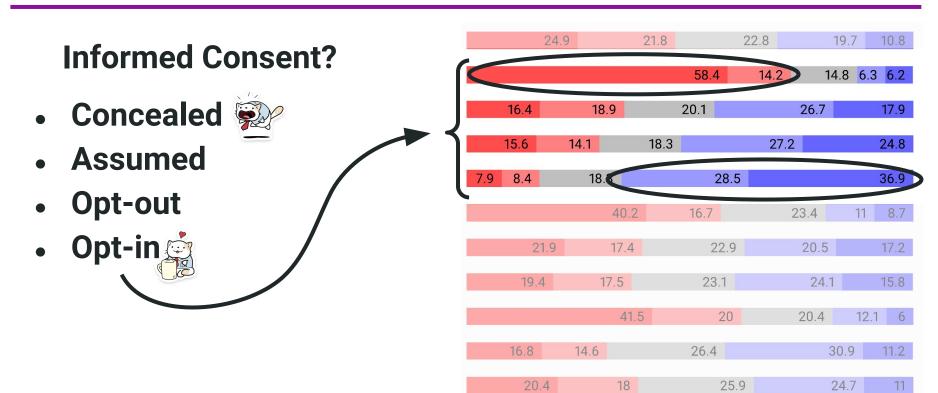
Overall Acceptability Across Scenarios



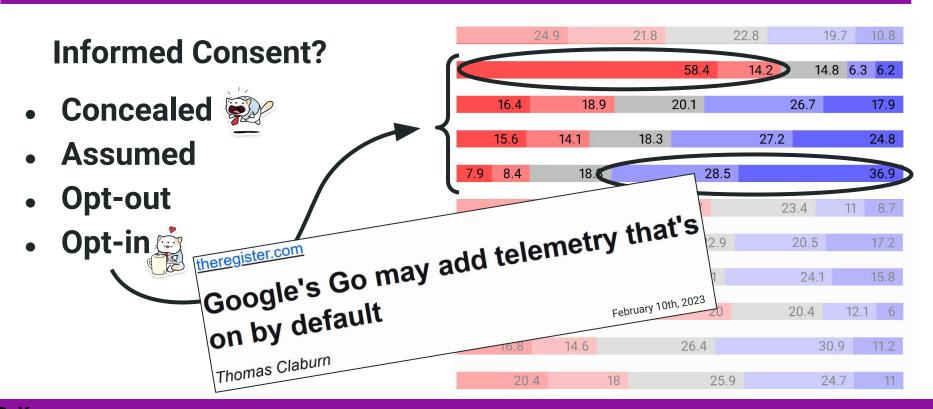
Retention: Acceptability Across All Scenarios

24.9 21.8 22.8 **Data Retention?** 14.2 14.8 6.3 6.2 **Indefinitely** 16.4 18.9 20.1 26.7 15.6 24.8 14.1 18.3 27.2 While in use 18.3 28.5 For set time 23.4 40.2 16.7 17.4 22.9 20.5 17.2 17.5 23.1 24.1 15.8 41.5 20 20.4 14.6 26.4 30.9 11.2 20.4 18 25.9

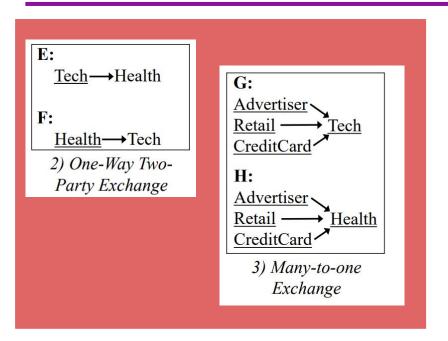
Consent: Acceptability Across All Scenarios

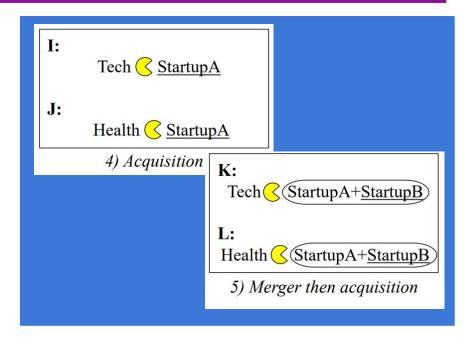


Consent: Acceptability Across All Scenarios



Sharing Type Impact on Overall Acceptability





General acceptability is statistically different between types.

Implications of Sharing Structures

Disambiguate Third Parties

PetSmart's <u>privacy policy</u> states: "We may share the information we collect with companies that provide support services to us."

- Current systems contains insufficient information to support preferences impacted by <u>sharing type</u>
- Privacy preferences fluctuate with any change to context
- Number of parties, trusted parties, purpose, etc. all influence acceptability, regardless technical privacy

