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Def: When objects come together and there is a possibility that a 
person could be caught or injured
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Common Causes of Pinch Points? 
● Lack of attention…
● Mobility (of equipment)
● Poor maintenance 
● Lack of proper safe work procedures
● Reaching into moving points…
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Privacy? Applied ML? 
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Privacy Pinch Points
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Legal PrivacyTechnical 
Privacy

Conceptual 
Privacy

Usable 
Privacy

Bill C-27
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Challenge: 
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Why Privacy and ML?

What makes this hard? What’s the risk?
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A company        
wants to analyze 

data 

But the data has 
privacy implications 
for the data subjects

Researchers 
develop technical 

solutions
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Privacy versus Security
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Security
Threats

Privacy
Threats

Westin’s (1967)

An entity’s ability to control 
how, when, and to what extent 
personal information about it is 

communicated to others

For privacy, focus on the harms (consequences) caused 
by privacy violations.
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Privacy Pinch Points = Risk of Harms
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Targeted Ads



B. Kacsmar 

Privacy Violation Life-Cycle
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Adversarial Thinking
● Think like an adversary to understand the vulnerabilities of a 

system and develop protection techniques.
● When designing inference attacks, we also apply Kerckhoff’s 

principle (or Shannon’s maxim), adapted to privacy 
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Assume the adversary knows how the system works
● There are no hidden parameters other than the users’ data 
● The adversary can even know some rough distribution
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What are inference attacks?

System

Leakage

Auxiliary or 
background 
information

Inference
Active attacker?
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Goal: Learn  something (non-trivial) and privacy sensitive from the system
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Goal: Learn  something (non-trivial) and privacy sensitive from the system

Different Adversarial Models

Different Adversarial Goals
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Inference Attacks: Goals and Abilities
● Goals:

○ Infer data
○ Infer a property of the data
○ Infer the presence (membership) 

of some data
○ Infer the behavior of a user
○ Infer some attributes of a data 

sample
○ Infer dependencies among the 

data
○ …

20



B. Kacsmar 

Inference Attacks: Goals and Abilities
● Goals:

○ Infer data
○ Infer a property of the data
○ Infer the presence (membership) 

of some data
○ Infer the behavior of a user
○ Infer some attributes of a data 

sample
○ Infer dependencies among the 

data
○ …

● Abilities:
○ Statistical tools (estimation theory, 

detection theory, maximum 
likelihood, Bayesian inference…)

○ Combinatorics
○ Heuristics
○ Machine learning
○ …
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Designing a System Aware of Inference Attacks
For any system that relies on users’ data, there are two goals:
● Utility: Design a system that provides benefits to its users 

and the service provider
● Privacy: Design a system that provides protection against 

inference attacks

22

Q: What are “utility” and “privacy”? How do we “measure” them?
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Designing a System Aware of Inference Attacks
For any system that relies on users’ data, there are two goals:
● Utility: Design a system that provides benefits to its users 

and the service provider
● Privacy: Design a system that provides protection against 

inference attacks
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Q: What are “utility” and “privacy”? How do we “measure” them?

It’s complicated…
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Privacy Mitigations? Private Computation?
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Defenses!!
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Private Machine 
Learning

Private Query 
Processing

Private Set 
Intersection

Multiparty 
Computations

A B? A B

C
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Private Computations Class
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Private Machine 
Learning

Private Query 
Processing

Private Set 
Intersection

Multiparty 
Computations

A B? A B

C

Define, what is being protected, from whom, 
and under what conditions this protection will hold. 
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Technical Guarantees Types
● Statistical 
● Computational
● Information Theoretical
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Quantifying Privacy: Theoretical Notions
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● Syntactic notions of privacy: these are computed on the 
leaked or released data. They are data dependent 
○ K-anonymity, l-diversity, t-closeness, etc
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Quantifying Privacy: Theoretical Notions

30

● Syntactic notions of privacy: these are computed on the 
leaked or released data. They are data dependent 
○ K-anonymity, l-diversity, t-closeness, etc

● Semantic notions of privacy: these are computed on the 
data release mechanism itself, and they hold regardless of 
the data (data independent) 
○ Mostly Differential Privacy
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Quantifying Privacy: Empirical Notions
● The performance of an inference attack e.g., the attacker 

error, accuracy, true positive rate, false positive rate, etc
● Can provide an upper bound on privacy
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The Privacy-Utility trade-off
● Given any metric for privacy and for utility, they are usually 

at odds:

P
riv

ac
y

Utility

• Q: How do you design a system that 
provides maximum utility?

• Q: How do you design a system that 
provides maximum privacy?

• Designing a system that provides a good 
privacy-utility trade-off is hard!
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The Privacy-Utility trade-off
● Given any metric for privacy and for utility, they are usually 

at odds:

P
riv

ac
y

Utility

• How do you design a system that provides 
maximum utility?

• You design it without privacy in mind
• How do you design a system that provides 

maximum privacy?
• You don’t design it

• Designing a system that provides a good 
privacy-utility trade-off is hard!
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Setting: 
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What are we protecting and how?
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A Private Computation? Cryptography!
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X = {x1, x2, …, xn}

Y = {y1, y2, …, ym}

I want to learn
 Z = X ∩ Y
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Private Set Intersection 
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B. Kacsmar, B. Khurram, N. Lukas, A. Norton, et al. "Differentially private two-party set operations." In 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 390-404. IEEE, 2020.

X = {x1, x2, …, xn}

Y = {y1, y2, …, ym}
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Private Computation and Machine Learning?
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Training Data Models Inferences/Outputs

Define, what is being protected, from who, and under what 
conditions this protection will hold. 
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Private Computation and Machine Learning?
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Training Data Models Inferences/Outputs

Unintentional 
Leakage

Intentional    Leakage

Define, what is being protected, from who, and under what 
conditions this protection will hold. 
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Private Computation and Machine Learning?
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Training Data Models Inferences/Outputs

Unintentional 
Leakage

Intentional    Leakage

Data Subject Data Owner Access Control

Define, what is being protected, from who, and under what 
conditions this protection will hold. 
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Design: 
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A Bit on Privacy Mitigation Techniques 
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Towards Privacy by Design, Core Tenets   
● User centric 
● Embedding privacy into the design
● Having privacy as the default configuration
● Ensuring privacy across the whole software life-cycle
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Technical Privacy: Differential Privacy Intuition
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Technical 
Privacy

Data 1

Data 2

Their Data

Bob
Nothing

Query x

y

Define, what is being protected, from who, and under what 
conditions this protection will hold. 
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Differential Privacy and Machine Learning
● DP-SGD
● Individualized Differential Privacy (PATE)
● More…

However, still require expertise for deployment
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Distribution of Trust
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Federated Learning
PLUS something

● Distribution alone is not private
● SMPC is…expensive
● But…

Not putting all the eggs in one 
basket, will always have appeal.
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Always: Data Minimization 
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Challenge: 
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Is it enough? What about the other vectors…



B. Kacsmar 

Challenge: 
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Consent and Communication
Is it enough? What about the other vectors…
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A Wider View of Technical Privacy
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Legal PrivacyTechnical 
Privacy

Conceptual 
Privacy

Usable 
Privacy

Bill C-27

M. Oates, et al. Turtles, locks, and bathrooms: Understanding mental models of privacy through illustration." Proceedings on Privacy Enhancing Technologies 2018.

Understanding privacy notions and behaviours, right to privacy, 
and privacy expectations
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Why Private Computation?
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A company        
wants to analyze 

data 

But the data has 
privacy implications 
for the data subjects

Researchers 
develop technical 

solutions

In what ways does private computation matter to people?
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Perceptions and Expectations
● What do data subjects understand?

● How is a data subject’s willingness to share impacted?

● How do data subjects perceive the risks?
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What they           
“want”

Build towards       
those attributes

What they            
“need”
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The Scenarios
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Ad Conversion Contact Discovery

Wage Equity Census Analysis
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Contact Discovery Conceptual Example
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The app wants to determine the common contacts between the 
new user and the existing users via…

1. …the new user shares all their contact information with the  social 
media app.

2. … the new user shares a modified version of their contact 
information…such that the social media app does not learn 
non-users…thus, this means…
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The Interview
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Expectations and 
Term Awareness

Initial Definition      
and Baseline

Scenario 
Assessment 

Inference Attack 
Perceptions

General 
Perceptions

Collective 
Explanation Activity
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Participant Comprehension and Expectations
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First Attempt Final ConsensusSecond Attempt
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Participant Comprehension and Expectations
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First Attempt Final ExplanationSecond Attempt

Overlapping

Brief

Unsuccessful

Accuracy!Descriptive!

Recommendations!

Purpose!

Protections!

Data collected!
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Participant Comprehension and Expectations
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First Attempt Final ExplanationSecond Attempt

Overlapping

Brief

Unsuccessful

Accuracy!Descriptive!

Recommendations!

Purpose!

Protections!

Data collected!

Unconcerned with details of the mechanism, impact matters
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Impact of Private Computation
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“...they’re trying to make it sound a
little bit better” (P19).

“...it feels a little bit more
protected that way” (P12)
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Bounded Impact of Private Computation
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“At the end of the day, 
they’re still like learning specific things about me” (P7)

Regulate the 
Restrictions

Consent Above 
All

Divulge the 
Details

Intentions 
Matter



B. Kacsmar 

Awareness of Unique Threat Models
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A B

Joins Social App Real Identity ConnectedContact Discovery

Alice
A B
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Awareness of Unique Threat Models
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 There exist, and will continue to exist risks 
that cannot be regulated by technology

A B

Joins Social App Real Identity ConnectedContact Discovery

Alice
A B
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Pinch Points. Many. But getting better…
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Image source: https://www.constructionsafety.co.za/ems/pinch-points/
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Takeaways
● Protections provided by protocols and constructions do not 

encompass the full range of risks experienced                     
by individuals in society

● Privacy mitigation techniques are a treatment and not a cure 
      for data privacy concerns

● People find private computation plausible, but they           
care about the context, not the math 
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 People can reason about private computation; let them.
Thanks!


