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More resources...

« From the TAs (thank you TAs)

— Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding
machine learning: From theory to algorithms. Cambridge
university press.

— Bach F. (2023). Learning Theory from First Principle.
(https://www.di.ens.fr/~fbach/Itfp_book.pdf)



Representing data for ML?



Data for ML: A Dataset of a Flower

Petal
Samples ™~
(instances, observations)

Sepal Sepal Petal Petal
length width length  width

wna | i 5:1 35 14 0.2 Setosa

2 4.9 3.0 1.4 0.2 Setosa

50 |6.4 3.5 45 1.2 Versicolor §

150 | 5.9 3.0 5.0 1.8 Virginica

| | — N
\ Sepal
/ Class labels

(targets)

Features
(attributes, measurements, dimensions)



Iris Dataset

Samples
(instances, observations)

* Four features, plus the class
label

Sepal
width

Petal
length

Petal
width

| 51 35 14 0.2 Setosa
PY 2 4.9 3.0 14 0.2 Setosa
50 | 6.4 3.5 4.5 1.2 Versicolor
150 | 5.9 3.0 5.0 1.8 Virginica

I ] N

/

Features

\ Sepal

Class labels
(targets)

(attributes, measurements, dimensions)

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40



Iris Dataset

Petal
Samples ™~
(instances, observations)

Sepal  Sepal Petal Petal

* Four features, plus the class
label B e e

* Our task is to predict class 2 oo [po [ [02 [
IabEI (flower typE) from the 4 50 |64 |35 45 1.2 Versicolor SE\NNES

fe at u res 150 | 5.9 3.0 5.0 1.8 Virginica
o I I ] N

\ Sepal
/ Class labels

(targets)

Features
(attributes, measurements, dimensions)

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40



Iris Dataset

Petal
Samples ™~
(instances, observations)

* Four features, plus the class

Sepal Petal Petal

I ad b e I width  length  width label

* Our task is to predict class S R Gl L il
IabEI (ﬂOwer typE) from the 4 50 |64 |35 45 1.2 Versicoior B
features 150 | 5.9 3.0 5.0 1.8 Virginica

* To graph these feature /‘ . o 3
vectors, we would need a 4D /o e
Spa ce (attributes, measurements, dimensions)

e Difficult to visualize

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40



Dimensions as Features

* We can use the dimensions of a vector to represent the values

for different features in our data
* E.g. the very famous Iris dataset ;

*In the figure —
* X: sepal length
*Y: sepal width pe &
* Color of dot: flower type o

Sepal width

Sepal length



Iris Dataset

* Each of the 4 features are continuous

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40

Petal
Samples ~
(instances, observations)

Sepal  Sepal Petal Petal Class
length  width length  width label

Setosa

2 4.9 3.0 14 0.2 Setosa

50 ‘54 |3.5 |45 ‘12
150 ’ | 3.0 | 5.0 ‘ 18 | Virginica
| I N
\ Sepal
/ Class labels
Features (targets)

(attributes, measurements, dimensions)



Iris Dataset

* Each of the 4 features are continuous
* The Class label is discrete

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40

Petal
Samples ~
(instances, observations)

Sepal  Sepal Petal Petal
length  width length  width

Setosa

2 4.9 3.0 14 0.2 Setosa

50 ‘sa ‘3.5 |45 ‘12
150 ’ ‘ 3.0 | 5.0 ‘ 18 | Virginica
| - N
\ Sepal
/ Class labels
Features (targets)

(attributes, measurements, dimensions)
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Iris Dataset

* Each of the 4 features are continuous
*The Class label is discrete

* How to represent class label?

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40

Samples
(instances, observations)

Sepal  Sepal Petal Petal Class
length  width length  width label

/ \ Class labels

Features (targets)
(attributes, measurements, dimensions)

Sepal
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Iris Dataset

* Each of the 4 features are continuous
* The Class label is discrete

* How to represent class label?
* Unique integer values

- (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
* One hot vector

[1, 0, 0] -> Setosa

- [0, 1, O] -> Versicolor

- [0, 0, 1] -> Virginica

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40

Sepal  Sepal Petal Petal Class
length  width length  width  label
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Iris Dataset

* Each of the 4 features are continuous
* The Class label is discrete

* How to represent class label?
* Unique integer values

- (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
* One hot vectors

. PA , 0] -> Setosa

- [0,( 0] -> Versicolor

- [0, 0, ¥ -> Virginica

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40

Sepal  Sepal Petal Petal Class
length  width length  width  label

13



Some terminology/notation...



Discrete features

* Class label is an example of a discrete feature
-« As opposed to continuous features like length and width



Discrete features

* Class label is an example of a discrete feature
-« As opposed to continuous features like length and width
* Features can also be discrete

 E.g. number of petals
« Favorite movie



Discrete features

* Class label is an example of a discrete feature
-« As opposed to continuous features like length and width

* Features can also be discrete
 E.g. number of petals
e Favorite movie

* Sometimes these features are ordinal (they have an ordering)
- Number of petals
- Not favorite movie



Discrete features for ML

* When features are ordinal, it can make sense to represent them
with integer numbers

* When features are categorical (i.e. non-ordinal) one hot vectors
work better




Discrete features for ML

* When features are ordinal, it can make sense to represent them
with integer numbers

* When features are categorical (i.e. non-ordinal) one hot vectors
work better

Different Meaning: Ordinal is a relationship




More Terms/Notation

A vector is a list of numbers
- The number of dimensions is the length of the list



More Terms/Notation

A vector is a list of numbers
- The number of dimensions is the length of the list

* A matrix is a table of numbers, so it has a length and a height
- E.g. 5x2, 10x100

« Convention is Rows x Columns (e.g., Roman Catholic, Rock, Roll
Call, Rate Class)



More Terms/Notation

A vector is a list of numbers
- The number of dimensions is the length of the list

* A matrix is a table of numbers, so it has a length and a height
« E.g. 5x2, 10x100
- Convention is Rows x Columns

* By this same logic, a vector is actually a matrix with length or
height of 1
« 6x1 is a column vector with 6 elements

« 1x3 is a row vector with 3 elements



Notational Conventions

* Square brackets to denote boundaries of vectors/matrices

* Convention is for variable names that denote vectors to be
« Lowercase a

- Bold or have an arrow over them (not always adhered to if the context
makes the form of the variable clear)

 Matrices

« Uppercase
- Plain font A



Linear Algebra Notational Recall

« Communicate the size of a matrix like this: A € R"*?
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*The “R” is a symbol for real numbers (i.e. numbers that don’t need
to be integers) g ¢ RP



Linear Algebra Notational Recall

« Communicate the size of a matrix like this: A € R"*?

*The “R” is a symbol for real numbers (i.e. numbers that don’t need
to be integers) g ¢ RP

« Communicate the size of a vector like this: A € R"*?



Linear Algebra Notational Recall

« Communicate the size of a matrix like this: A € R"*?

*The “R” is a symbol for real numbers (i.e. numbers that don’t need
to be integers) g ¢ RP

« Communicate the size of a vector like this: A € R"*?

* Transpose (T) means to swap rows for columns A% € RP*"



Example: text documents

* Representing text as a feature vector

* Example (nonsensical) text:
« D1: brown cat brown cat dog cat mouse
- D2: brown cat mouse mouse mouse
- D3: dog brown brown cat meow

28



Example: text documents

* Representing text as a feature vector

* Example (nonsensical) text:
« D1: brown cat brown cat dog cat mouse
« D2: brown cat mouse mouse mouse
« D3: dog brown brown cat meow

* [dentify vocabulary (all words across all documents)

- brown, cat, dog, mouse, meow (this is the feature order
below)

29



Example: text documents

* Representing text as a feature vector

* Example (nonsensical) text:
- D1: brown cat brown cat dog cat mouse
« D2: brown cat mouse mouse mouse
- D3: dog brown brown cat meow

* [dentify vocabulary (all words across all documents)
- brown, cat, dog, mouse, meow (this is the feature order below)

 Features are the # of occurrences of each vocabulary word in doc.
-D1:[2,3,1, 1, 0]
-D2:[1,1,0, 3, 0]
-D3:[2,1,1,0, 1]

30



Vector Addition

Pic from youtube playlist video 1



https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Vector addition for our text dataset?

* Recall:
-D1:[2,3,1,1, 0]
-D2:[1,1,0, 3, 0]

* What does it mean to have a new document A=D1 + D2?

*|.e. what document would give us a vector equivalentto A=D1 + D2?

?
(7
(¥

“ A7



Scalar multiplication for vectors

e




Scalar multiplication for vectors

=7




Scalar multiplication for vectors




Scalar multiplication mean for our text dataset?

* Recall:
-D1:[2,3,1,1, 0]

* What does it mean to have document A=2 * D1?

¢
@

=



Next: Inner product (dot product)

« Definition @b = Z aib;

7

3
*E.g.3-Dvectors a-b=) ab;

1

1
a-b=ab + asbs + azbs



Inner product (dot product)

* This ends up being quite important in ML
* Corresponds to the weighted sum

* Many models make predictions using a weighted sum of the feature
vector

* Example: price vector multiplied by quantity vector
* Makes a scalar: can be used as a measure of similarity (sometimes)



Inner product (dot product)

* Neat tricks with the inner product

* One hot vector times feature vector “selects” a particular element
from the vector

* Example: a=[0, 1, 0], b=[7, 5, 8]



Inner product (dot product)

\/ectors can be squared
*E.g. b=[7,5, 8], b*="7?

?
&
=

da's v



Length of a vector (Euclidean Norm)

* Notation ||al|

« Definition lall = va-a
- [
i

* You may have seen this in the Pythagorean theorem (length of the hypotenuse)



Vector Similarity

* [t’s often useful to compute the similarity between two vectors

)W

42



Vector Similarity

* [t’s often useful to compute the similarity between two vectors

Y —

43



Vector Similarity

* Definition one: Euclidean distance

Y —

44



Vector Similarity

* Definition one: Euclidean distance

Distance between the tips/arrow end

oy

45



Vector similarity: Euclidean Distance

* Euclidean Distance

V(w—v)?



Vector similarity: Euclidean Distance

* Some problems with Euclidean Distance
*Here x and w are more similar than w and v

el

*|s that what we want?

x

47



Vector Similarity...Cosine Similarity

 Calculate the cosine of the angle between two vectors ¢ . p
- Small angle -> very similar al| |1]]
- Large angle -> very dissimilar
e Invariant to length,

sensitive to direction /\AVV

bad N\

48



Matrices

* Can be thought of as a function that transforms space

*In ML, our data is usually formatted into a matrix, where the rows
correspond to data samples, and the columns correspond to the
features ™

49



Matrix Multiplication

*E.g.A*B
* Each row vector of A dot product with each column vector of B
- Again, Roll Call to remember which is rows and which is cols

* Scalar appears in resulting matrix where the row and column
intersect

A e R"XP
B € RP*™
(AB) € R™*™

*The # cols of A must match # of rows in B

50



Matrix Multiplication

|
Ole= 77| M@

i

Pm pm PQ) '_‘N
)

51



Special Matrices

* Identity matrix (often denoted I)
- Square matrix, All zeros, except for the diagonal elements are 1

/ 0\

0

I, = > L TOWS

L0 00 o 1)

A 7
~

n columns

* Called the Identity because IA = A, for all matrices A

OO =
O = O
— O O




Special Matrices and Invertible Matrices

e Inverse of a matrix A(A™") =1
* Only square matrices are invertible

* Finding the inverse is complex for large matrices
- We won’t worry about it, the computer can do it for us

* Some matrices are not invertible! (Singular) :(



Probability Overview

Many of these slides are derived from Alona Fyshe, Seyong Kim, Tom Mitchell,
William Cohen, Eric Xing. Thanks!



Why do we care about probability?

* Helps us reason about how to make the best decision for cases
were we need to generalize:

Temp Precip Day Clothes

22 None Fri Casual Walk
3 None Sun Casual Walk
10 Rain Wed Casual Walk
30 None Mon Casual Drive
20 None Sat Formal Drive
25 None Sat Casual Drive
-5 Snow Mon Casual Drive
27 None Tue Casual Drive




Recall: Generalization
* Dealing with previously unseen cases

* Will she walk or drive?

Temp Precip Day Clothes

22 None Fri Casual Walk
3 None Sun Casual Walk
10 Rain Wed Casual Walk
30 None Mon Casual Drive
20 None Sat Formal Drive
25 None Sat Casual Drive
-5 Snow Mon Casual Drive
27 None Tue Casual Drive

We might plausibly
make any of the
following arguments:

— She's going to walk
because it's raining
today and the only
other time it rained,
she walked.

56



Terminology: Random Variables

*Informally, X is a random variable if
— X denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment
* e.g. rolling a die

* Examples
— X =The hometown of a randomly drawn person from our class
* multivalued
— X =True if two randomly drawn persons from our class have same birthday
* binary

57



Functions of Random Variables

* Define P(X) as “the fraction of possible worlds in which X is true”
or “the fraction of times X holds, in repeated runs of the random
experiment”

Worlds in which X
is true

Worlds in which X is False (~X)



Functions of Random Variables

* Define P(X) as “the fraction of possible worlds in which X is true”
or “the fraction of times X holds, in repeated runs of the random

experiment”
— the set of possible worlds is called the sample space, S

Blue Rectangle:

Sample space of all P(X) = Area of
ossible worlds (S '
P ) Worlds in which X reddish oval
) O0<P(X)<1
Is true

Area =1 (all possible
things)
Worlds in which X is False (~X)



A little formalism

More formally, we have

*a sample space S (e.g., set of students in our class)
— aka the set of possible worlds
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*a random variable is a function defined over the sample space
— Handedness: S U {r, I} (binary, discrete)
— Height: S I Real numbers (continuous)



A little formalism

*a sample space S (e.g., set of students in our class)
— aka the set of possible worlds

*a random variable is a function defined over the sample space
— Handedness: S U {r, I} (binary, discrete)
— Height: S I Real numbers (continuous)

*an event is a subset of S
— e.g., the subset of S for which handedness =r
— e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)



A little formalism

More formally, we have

*a sample space S (e.g., set of students in our class)
— aka the set of possible worlds

*a random variable is a function defined over the sample space
— Handedness: S 0 {r, I} (binary, discrete)
— Height: S [I Real numbers (continuous)

*an event is a subset of S
— e.g., the subset of S for which handedness =r
— e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)

*We are often interested in probabilities of specific events and of
specific events conditioned on other specific events

63



The Axiom(s) of Probability

* Assume binary random variables A and B.



The Axiom(s) of Probability

* Assume binary random variables A and B.
— 0<=P(A)<=1
— P(True)=1
— P(False) =0
— P(A orB)=P(A) + P(B) - P(A and B)

65



Visualizing Probability Axioms




Towards Interpreting the axioms

* P(A)=0

The area of A can’t get any
smaller than O

And a zero area would mean no
world could ever have A true

P(True)=0

67



Towards Interpreting the axioms
e P(A)=1

The area of A can’t get any
bigger than 1

And an area of 1 would mean
all worlds will have A true

P(True) =1

68



Towards Interpreting the Axioms

0<=P(A)<=1

69



Towards Interpreting the axioms
* P(AorB)=P(A)+P(B)
[WRONG! but why?]

-

{

;
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Towards Interpreting the axioms
e P(AorB)=P(A)+P(B)-P(A and B)

Simple addition and subtraction

71



Another useful theorem

0<=P(A) <=1, P(True) = 1, P(False) =0,
P(A or B) = P(A) + P(B) - P(A and B)

@ 0P(A)=P(AAB)+P(AA~B)



Elementary Probability in Pictures

*P(A) =P(A " B)+ P(A"~B)

S

P(A or B) = P(A A B) + P(A A ~B) + P(~A A B)




Extending the Axiom
e P(AorBor(C)=?

A“B

-

(

;

74



Multivalued Discrete Random Variables

Suppose A can take on more than 2 values

A is a random variable with arity k if it can take on exactly one value
out of {vl,vz, vk}

Example: A={1,2,3....,20}: good for 20-sided dice games

Notation: let’s write the event AHasValueOfv as “A=v”

P(A=v,nA=v,)=01fi=j

Thus"'P<A:U1\/A:U2\/ \/A:”Uk)



Elementary Probability in Pictures

k
ZP(A =v;)=1 (Law of total probability)
4

A=3

A=4
A=1

76



Bunny Break




Definition of Conditional Probability

P(A ~ B)
7~ P(A|B) = oo Foundation for
We say “probability of A given b” P(B) Bayesi Ru|e|

(90




Definition of Conditional Probability
P(A ~ B)
P(A|B) = -----------
P(B)
Corollary: The Chain Rule

P(A~B)=P(A|B) P(B)



Definition of Conditional Probability

P(A ™ B)
TP | R —
P(B)
Corollary: The Chain Rule

P(A A B) = P(A|B) P(B)
P(AABAC)=P(A|BAC)P(BAC)



Definition of Conditional Probability

P(A " B)
N[ R —
P(B)
Corollary: The Chain Rule

P(A A B) = P(A|B) P(B)
P(AABAC)=P(A|BAC)P(BAC)
= P(A|B~ C) P(B|C) P(C)



Independent Events

*Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)



Independent Events

*Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

*Intuition: knowing A tells us nothing about the value of B
(and vice versa)



Independent Events

*Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

°Intuit;on: knowing A tells us nothing about the value of B (and vice
versa

*From chain rule
P(A " B)=P(A|B) P(B)
(if) = P(A)P(B)

->P(A|B) =P(A)



Independent Events

*Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

°Intuit;on: knowing A tells us nothing about the value of B (and vice
versa

*From chain rule

P(A~B)=P(A|B) P(B) =P(A)P(B)
->P(A|B) =P(A)

* You frequently need to assume the independence of something
to solve a learning problem.



Continuous Random Variables

k
*The discrete case: sum over all values of Ais 1 ;P(A - VJ') =1
*The continuous case: infinitely many values =
for A and the integral is 1 f fo(X)dx =1

f(x) is a probability aénsity function (pdf)

also V X fp( X)=0



Continuous Random Variables

k
*The discrete case: sum over all values of Ais 1 ;P(A =v,) =1

*The continuous case: infinitely many values e
for A and the integral is 1 f fo(X)dx =1

f(x) is a probability aénsity function (pdf)

1. 0<=P(A)<=1
2. Pr(True)=1
3. P(AorB)=P(A)+P(B)-P(AandB)

also V X fP( X)=0
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Bayes Rule

Let’s write two expressions for P(A A B)

Sa=

P(A~ B)=P(A|B) P(B)
P(A~B)=P(B|A)P(A)




Bayes Rule

Let’s write two expressions for P(A A B)

=

P(A A B)=P(A|B) P(B)
P(A A B)=P(B|A)P(A)
P(A|B) P(B) = P(B|A)P(A)




Bayes Rule

Let’s write two expressions for P(A A B)

Sa=

P(A A B)=P(A|B) P(B)
P(A A B)=P(B|A)P(A)
P(A|B) P(B) = P(B]A)P(A)




P(B|A) * P(A) ,
P(A|B) = B Bayes’ rule

we call P(A) the “prior”
Bayes, Thomas (1763) An essay towards

solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society
of London, 53:370-418

and P(A|B) the “posterior”

...by no means merely a curious speculation in the doctrine of chances, but
necessary to be solved in order to a sure foundation for all our reasonings
concerning past facts, and what is likely to be hereafter.... necessary to be
considered by any that would give a clear account of the strength of analogical or

inductive reasoning...

91



Other Forms of Bayes Rule
P(B| A)P(A)

F(A1B) = P(B| A)P(A)+ P(B |~ A)P(~ A)

P(B|AANX)P(AAX)
P(B A X)

P(ABAX)=

Recall useful theorem Slide 72 P(B) =P(B ~ A) + P(B ~ ~A) , and same as before just different letters P(C » D) = P(C|D) P(D)



Applying Bayes Rule

P(B|1A)P(A)

PaB) = P(B1AP(A)+ P(B I~ AP(~ A)

A =you have the flu, B =you just coughed

Assume:
P(A) =0.05

93



Applying Bayes Rule

P(B|1A)P(A)

PaB) = P(B1AP(A)+ P(B I~ AP(~ A)

A =you have the flu, B =you just coughed

Assume:
P(A) =0.05

Also assume the following information is known to you
P(B|A) =0.80
P(B| ~A)=0.4

2
what is P(flu | cough) = P(A|B)? _g



Next! Joint distribution

?

*Probability of >1 thing happening at the same time
— Probability it will rain today and | forgot my umbrella
* P(rain=true,umbrella=false)



The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:
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The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of
values of your variables (if there are M Boolean
variables then the table will have 2™ rows).

.—nn—nn—-Hoooo>
I—*HOOI—*I—*OOW
HOHOHOHOO
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The Joint Distribution

Example: Boolean variables A, B, C

Prob

Recipe for making a joint distribution of M variables: D

0.05

1. Make a truth table listing all combinations of 0.10

values of your variables (if there are M Boolean 005

variables then the table will have 2™ rows). o

0.10

2. For each combination of values, say how 0is

HHHI—‘OOOO>
I—*HOOI—*I—*OOW
mlo|lr|lo|lrlol=|lol A

probable it is.

0.10




The Joint Distribution

Example: Boolean variables A, B, C

. . T . A B C Prob

Recipe for making a joint distribution of M variables: - - - D
0 0 1 0.05
1. Make a truth table listing all combinations of 0 1 0 0.10
values of your variables (if there are M Boolean 0 ! ! 005
. . 1 0 0 0.05
variables then the table will have 2™ rows). - - - o
2. For each combination of values, say how probable [; , 5 i
itis. 1 1 1 0.10

3. If you subscribe to the axioms of probability,

those numbers must sum to 1.

What goes here? =—

?
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gender hours_worked wealth

Female v0:40.5- poor

Joint Probability

: : : v1:40.5+ poor
Distribution
Male v0:40.5- poor
rich
v1:40.5+ poor
rich

0.253122 |

0.0245895 ||}
0.0421768 |}
0.0116293 ||

0331313 I
0.0971295 |

0.134106 |G

0.105933 [N

Once you have the joint distribution, you can ask for the probability of any

logical expression involving your attribute

100



Using the Joint
Distribution

P(Poor) =0.7604

gender hours_worked wealth

Female v0:40.5- poor
rich

v1:40.5+ poor
rich

Male v0:40.5- poor
rich

v1:40.5+ poor
rich

0.253122 |

0.0245895 ||}
0.0421768 [}
0.0116293 ||

0331313 [
0.0971295 |

0.134106 |G

0.105933 [N

P(E)= Z P(row)

rows matching E
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Using the Joint
Distribution

P(Poor) = 0.7604

gender hours_worked wealth

IFemale v0:40.5-

poor__ 0253122 I

rich  0.0245895 ||}

S

C v1:40.5+ poor 00421768 . )
rich  0.0116293 ||
ale  v0:40.5- poor @
rich  0.0971295 |
v1:40 5+ poor 0.1341®

rich  0.105933 [N

P(E)y= ) P(row)

rows matching £
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gender hours_worked wealth

Female v0:40.5- poor

Inference with

t h J : n t v1:40.5+ poor
e O I rich
Male v0:40.5- poor
rich
v1:40.5+ poor
rich

0.253122 |

0.0245895 ||}
0.0421768 [}
0.0116293 ||

0331313 NN
0.0971295 |

0.134106 |G

0.105933 [N

Z P(row)

P(El A Ez) __ rows matching £ and £

P(El |E2):

P(E,) Z P(row)

rows matching £,
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Next! Maximum Likelihood Estimation (MLE)

Rich vs Poor



What is the probability of a
person being rich, given you
know nothing else

about that person?

105



Let’s say 3/57

We assume that the wealth of the people in our dataset D is
independently distributed

6 = Probability of being rich = P(rich)
? = Probability of being poor = P(poor)
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D={r,p,r,r,p} &r =4#rich Qp=H# poor
P(D) =P(r and p and r and r and p)
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Let’s say 3/57

We assume that the wealth of the people in our dataset D is

independently distributed
6 = Probability of being rich = P(rich)

? = Probability of being poor = P(poor)
D={r,p,r,r,p} &r =4#rich Qp=H# poor
P(D) =P(r and p and r and r and p)
=P(rich) * P(poor) x P(rich)x
P(rich) x P(poor)
=0x(1—0)%0x0x%(1—
=(1—0)% %9




That’s Maximum Likelihood Estimation
(MLE)

It’s not always the best
solution...



Issues with MLE estimate

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any specs.
How can | find out how it behaves?

Frequency

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Face Shown
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| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency
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1
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1. Collect some data (20 rolls)



Issues with MLE estimate

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

6

5;

Face Shown

1. Collect some data (20 rolls)
2. Estimate P(i)=CountOf(rolls of i)/CountOf(any roll)



Issues with MLE estimate

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

6
5
4
3 L
2
1
0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Face Shown P(19)=025




Issues with MLE estimate

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

6

: p

e s P(19)=0.25
P(20)=0.2
But: Do | really think it’s impossible to roll a 1,2 or 37



A better solution?

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

6
5
4
3
2
1
0

1
1
! 1
= T -4'-_
by L
I B = | Lt
I I I I [
1 1 1 ! 1
1l - - - = r B S A
by byt 1 )0 [ |
) & W !
- .

it

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Face Shown

1. Collect some data (20 rolls)
2. Estimate P(i)



A better solution

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

6 i

5 L e

Face Shown

0. Imagine some data (20 rolls, each i shows up 1x)

1. Collect some data (20 rolls)
2. Estimate P(i)



A better solution?

P(1)=1/40
P(2)=1/40
6 Frequency B P(3)=1/4O
5 T P(4)=(2+1)/40
2 mn i P(19)=(5+1)/40
° WEEZEii:4ﬁi:67859510115251351_4LJ:1551617E1531920 P(20)=(4+1)/40=1/8
0.2 vs. 0.125 — reall
CountOf (i) +1 Y

different! Maybe | should

P@) =
O CountOf (ANY) + CountOf IMAGINED) sgmagines” loa dataz



What if we know that poor people are much
more common than rich people?
@ _




We have a belief about 6

*P(6]D) = P(D|0)*P(B)/P(D)

Now we can incorporate our
belief about 6



We have a belief about
*P(0|D) = P(D|0B)*P(6)/P(D)

X

Now we can incorporate our
belief about 6



We have a belief about 6

*P(6]D) = P(D|0)*P(B)/P(D)
x P(D|B)*P(6)

Now we can incorporate our
belief about 6

This is a MAP (Maximum A Posteriori) Estimate



Conjugate Prior

e Qur likelihood so far has been based on a Bernoulli
distribution.

*Beta is a conjugate prior to Bernoulli

* This means their pdfs (probability density functions) play
nice together

* P(D]|0)*P(0) will be easy to deal with
* Called the posterior likelihood



Estimating Parameters

* Maximum Likelihood Estimate (MLE): choose 6 that

maximizes probability of observed data
0 = arg m@ax P(D | 0)

e Maximum a Posteriori (MAP) estimate: choose 0
that is most probable given prior probability and

thedata 5 — 5 max P(6 | D)

= arg m@ax — P(DP|(2)P(0)

A tutorial:
http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf



Thanks, see you Tuesday!
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