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More resources…

• From the TAs (thank you TAs)
– Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding 

machine learning: From theory to algorithms. Cambridge 
university press.

– Bach F. (2023). Learning Theory from First Principle. 
(https://www.di.ens.fr/~fbach/ltfp_book.pdf)

2



3

Representing data for ML?



Data for ML: A Dataset of a Flower
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Iris Dataset

•Four features, plus the class 
label

•

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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Iris Dataset

•Four features, plus the class 
label

•Our task is to predict class 
label (flower type) from the 4 
features

•

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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Iris Dataset

•Four features, plus the class 
label

•Our task is to predict class 
label (flower type) from the 4 
features

•To graph these feature 
vectors, we would need a 4D 
space

• Difficult to visualize

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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Dimensions as Features

•We can use the dimensions of a vector to represent the values 
for different features in our data

• E.g. the very famous Iris dataset

• In the figure → 
• X: sepal length
• Y: sepal width
• Color of dot: flower type

8



• Each of the 4 features are continuous

•

Iris Dataset

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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• Each of the 4 features are continuous

• The Class label is discrete

Iris Dataset

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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• Each of the 4 features are continuous

• The Class label is discrete

• How to represent class label?

Iris Dataset

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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• Each of the 4 features are continuous
• The Class label is discrete

• How to represent class label?
• Unique integer values 

• (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
• One hot vector 

• [1, 0, 0] -> Setosa
• [0, 1, 0] -> Versicolor
• [0, 0, 1] -> Virginica

Iris Dataset

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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• Each of the 4 features are continuous
• The Class label is discrete

• How to represent class label?
• Unique integer values 

• (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
• One hot vectors 

• [1, 0, 0] -> Setosa
• [0, 1, 0] -> Versicolor
• [0, 0, 1] -> Virginica

Iris Dataset

https://medium.com/analytics-vidhya/exploratory-data-analysis-uni-variate-analysis-of-iris-data-set-690c87a5cd40
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Some terminology/notation…



Discrete features

• Class label is an example of a discrete feature
• As opposed to continuous features like length and width

•
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Discrete features

• Class label is an example of a discrete feature
• As opposed to continuous features like length and width

• Features can also be discrete
• E.g. number of petals
• Favorite movie

•
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Discrete features

• Class label is an example of a discrete feature
• As opposed to continuous features like length and width

• Features can also be discrete
• E.g. number of petals
• Favorite movie

• Sometimes these features are ordinal (they have an ordering)
• Number of petals
• Not favorite movie
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Discrete features for ML

• When features are ordinal, it can make sense to represent them 
with integer numbers

• When features are categorical (i.e. non-ordinal) one hot vectors 
work better

18

Why?



Discrete features for ML

• When features are ordinal, it can make sense to represent them 
with integer numbers

• When features are categorical (i.e. non-ordinal) one hot vectors 
work better
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Why?

Different Meaning: Ordinal is a relationship



More Terms/Notation

• A vector is a list of numbers
• The number of dimensions is the length of the list

•
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More Terms/Notation

• A vector is a list of numbers
• The number of dimensions is the length of the list

• A matrix is a table of numbers, so it has a length and a height
• E.g. 5x2, 10x100
• Convention is Rows x Columns (e.g., Roman Catholic, Rock, Roll 

Call, Rate Class)

•
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More Terms/Notation

• A vector is a list of numbers
• The number of dimensions is the length of the list

• A matrix is a table of numbers, so it has a length and a height
• E.g. 5x2, 10x100
• Convention is Rows x Columns 

• By this same logic, a vector is actually a matrix with length or 
height of 1

• 6x1 is a column vector with 6 elements
• 1x3 is a row vector with 3 elements
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Notational Conventions

• Square brackets to denote boundaries of vectors/matrices

• Convention is for variable names that denote vectors to be
• Lowercase  a
• Bold or have an arrow over them (not always adhered to if the context 

makes the form of the variable clear)    a

• Matrices
• Uppercase
• Plain font
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Linear Algebra Notational Recall

• Communicate the size of a matrix like this:

•
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Linear Algebra Notational Recall

• Communicate the size of a matrix like this:

• The “R” is a symbol for real numbers (i.e. numbers that don’t need 
to be integers)

•
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Linear Algebra Notational Recall

• Communicate the size of a matrix like this:

• The “R” is a symbol for real numbers (i.e. numbers that don’t need 
to be integers)

• Communicate the size of a vector like this: 

•
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Linear Algebra Notational Recall

• Communicate the size of a matrix like this:

• The “R” is a symbol for real numbers (i.e. numbers that don’t need 
to be integers)

• Communicate the size of a vector like this: 

• Transpose (T) means to swap rows for columns
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Example: text documents

• Representing text as a feature vector

• Example (nonsensical) text:
• D1: brown cat brown cat dog cat mouse
• D2: brown cat mouse mouse mouse
• D3: dog brown brown cat meow

•
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Example: text documents

• Representing text as a feature vector

• Example (nonsensical) text:
• D1: brown cat brown cat dog cat mouse
• D2: brown cat mouse mouse mouse
• D3: dog brown brown cat meow

• Identify vocabulary (all words across all documents)
• brown, cat, dog, mouse, meow (this is the feature order 

below)

•
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Example: text documents

• Representing text as a feature vector
• Example (nonsensical) text:

• D1: brown cat brown cat dog cat mouse
• D2: brown cat mouse mouse mouse
• D3: dog brown brown cat meow

• Identify vocabulary (all words across all documents)
• brown, cat, dog, mouse, meow (this is the feature order below)

• Features are the # of occurrences of each vocabulary word in doc.
• D1: [2, 3, 1, 1, 0]
• D2: [1, 1, 0, 3, 0]
• D3: [2, 1, 1, 0, 1]

30



Vector Addition

  v: [1,  2]
  w: [3, -1]

v+w: [4,  1] 

Pic from youtube playlist video 1
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https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


Vector addition for our text dataset?

• Recall:
• D1: [2, 3, 1, 1, 0]
• D2: [1, 1, 0, 3, 0]

• What does it mean to have a new document A = D1 + D2?

• I.e. what document would give us a vector equivalent to A = D1 + D2?
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Scalar multiplication for vectors

W

3w
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Scalar multiplication for vectors

W

3w
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Scalar multiplication for vectors

W

3w
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Scalar multiplication mean for our text dataset?

• Recall:
• D1: [2, 3, 1, 1, 0]

• What does it mean to have document A = 2 * D1?
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Next: Inner product (dot product)

• Definition

• E.g. 3-D vectors
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Inner product (dot product)

• This ends up being quite important in ML

• Corresponds to the weighted sum

• Many models make predictions using a weighted sum of the feature 
vector

• Example: price vector multiplied by quantity vector

• Makes a scalar: can be used as a measure of similarity (sometimes)
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Inner product (dot product)

• Neat tricks with the inner product

• One hot vector times feature vector “selects” a particular element 
from the vector

• Example: a=[0, 1, 0], b=[7, 5, 8]
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Inner product (dot product)

• Vectors can be squared

• E.g. b=[7, 5, 8], b2 = ?
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Length of a vector (Euclidean Norm)

• Notation

• Definition

• You may have seen this in the Pythagorean theorem (length of the hypotenuse)
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Vector Similarity

• It’s often useful to compute the similarity between two vectors

W
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Vector Similarity

• It’s often useful to compute the similarity between two vectors

W
V
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Vector Similarity

• Definition one: Euclidean distance

W
V
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Vector Similarity

• Definition one: Euclidean distance

W
V

Distance between the tips/arrow end
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Vector similarity: Euclidean Distance

• Euclidean Distance
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Vector similarity: Euclidean Distance

• Some problems with Euclidean Distance

• Here x and w are more similar than w and v

• Is that what we want?

W V

X
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Vector Similarity…Cosine Similarity

•  Calculate the cosine of the angle between two vectors
• Small angle -> very similar
• Large angle -> very dissimilar
• Invariant to length, 

sensitive to direction W V

X
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Matrices

• Can be thought of as a function that transforms space

• In ML, our data is usually formatted into a matrix, where the rows 
correspond to data samples, and the columns correspond to the 
features
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Matrix Multiplication

• E.g. A * B

• Each row vector of A dot product with each column vector of B
• Again, Roll Call to remember which is rows and which is cols

• Scalar appears in resulting matrix where the row and column 
intersect

• The # cols of A must match # of rows in B
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Matrix Multiplication
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Special Matrices

• Identity matrix (often denoted I)
• Square matrix, All zeros, except for the diagonal elements are 1

52
• Called the Identity because IA = A, for all matrices A



Special Matrices and Invertible Matrices 

• Inverse of a matrix

• Only square matrices are invertible

• Finding the inverse is complex for large matrices
• We won’t worry about it, the computer can do it for us

• Some matrices are not invertible! (Singular) :( 
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Probability Overview

Many of these slides are derived from Alona Fyshe, Seyong Kim, Tom Mitchell, 
William Cohen, Eric Xing. Thanks!



Why do we care about probability?
• Helps us reason about how to make the best decision for cases 

were we need to generalize:

Temp Precip Day Clothes
22 None Fri Casual Walk
3 None Sun Casual Walk
10 Rain Wed Casual Walk
30 None Mon Casual Drive
20 None Sat Formal Drive
25 None Sat Casual Drive
-5 Snow Mon Casual Drive
27 None Tue Casual Drive
24 Rain Mon Casual ?
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Recall: Generalization
• Dealing with previously unseen cases
• Will she walk or drive?

Temp Precip Day Clothes
22 None Fri Casual Walk
3 None Sun Casual Walk
10 Rain Wed Casual Walk
30 None Mon Casual Drive
20 None Sat Formal Drive
25 None Sat Casual Drive
-5 Snow Mon Casual Drive
27 None Tue Casual Drive
24 Rain Mon Casual ?

We might plausibly 
make any of the 
following arguments:
– She's going to walk 

because it's raining 
today and the only 
other time it rained, 
she walked. 

– She's going to drive 
because she has 
always driven on 
Mondays…
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Terminology: Random Variables

• Informally, X is a random variable if
– X denotes something about which we are uncertain
– perhaps the outcome of a randomized experiment

• e.g. rolling a die 

•Examples
– X = The hometown of a randomly drawn person from our class

• multivalued
– X = True if two randomly drawn persons from our class have same birthday

• binary

57



Functions of Random Variables

• Define P(X) as “the fraction of possible worlds in which X is true” 
or “the fraction of times X holds, in repeated runs of the random 
experiment”
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Worlds in which X is False (~X)

Worlds in which X 
is true



Functions of Random Variables

• Define P(X) as “the fraction of possible worlds in which X is true” 
or “the fraction of times X holds, in repeated runs of the random 
experiment”
– the set of possible worlds is called the sample space, S

59

Blue Rectangle: 
Sample space of all 
possible worlds (S)

Area = 1 (all possible 
things)

Worlds in which X is False (~X)

Worlds in which X 
is true

P(X) = Area of
reddish oval
0 < P(X) < 1



A little formalism

More formally, we have

•a sample space S (e.g., set of students in our class)
– aka the set of possible worlds

• 
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A little formalism

•  a sample space S (e.g., set of students in our class)
– aka the set of possible worlds

•a random variable is a function defined over the sample space
– Handedness: S 🡺 { r, l} (binary, discrete)
– Height: S 🡺 Real numbers (continuous)

• 

61



A little formalism

•a sample space S (e.g., set of students in our class)
– aka the set of possible worlds

•a random variable is a function defined over the sample space
– Handedness: S 🡺 { r, l} (binary, discrete)
– Height: S 🡺 Real numbers (continuous)

•an event is a subset of S
– e.g., the subset of S for which handedness = r
– e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)
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A little formalism

More formally, we have
•a sample space S (e.g., set of students in our class)

– aka the set of possible worlds

•a random variable is a function defined over the sample space
– Handedness: S 🡺 { r, l} (binary, discrete)
– Height: S 🡺 Real numbers (continuous)

•an event is a subset of S
– e.g., the subset of S for which handedness = r
– e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)

•We are often interested in probabilities of specific events and of 
specific events conditioned on other specific events 
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The Axiom(s) of Probability
•Assume binary random variables A and B. 

64



The Axiom(s) of Probability
•Assume binary random variables A and B. 

– 0 <= P(A) <= 1
– P(True) = 1
– P(False) = 0
– P(A or B) = P(A) + P(B) – P(A and B)
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Visualizing Probability Axioms

Worlds in which A is False (~A)

Worlds in which A 
is true
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Towards Interpreting the axioms
• P(A) = 0

The area of A can’t get any 
smaller than 0

And a zero area would mean no 
world could ever have A true 

P(True) = 0
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Towards Interpreting the axioms
• P(A) = 1

The area of A can’t get any 
bigger than 1

And an area of 1 would mean 
all worlds will have A true 

P(True) = 1
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Towards Interpreting the Axioms

                                      0 <= P(A) <= 1
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Towards Interpreting the axioms
• P(A or B) = P(A) + P(B)  
[WRONG! but why?]

A

B
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P(A or B)

B

P(A and B)

Towards Interpreting the axioms
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

Simple addition and subtraction
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Another useful theorem

0 <= P(A) <= 1, P(True) = 1, P(False) = 0,

  P(A or B) = P(A) + P(B) - P(A and B)

🡺 P(A) = P(A ^ B) + P(A ^ ~B)
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Elementary Probability in Pictures

•P(A) = P(A ^ B) + P(A ^ ~B)

•P(A or B) = P(A ^ B) + P(A ^ ~B) + P(~A ^ B)

B

A ^ ~B
A ^ B
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Extending the Axiom
• P(A or B or C) = ?

74

A B

C



Multivalued Discrete Random Variables

• Suppose A can take on more than 2 values

• A is a random variable with arity k if it can take on exactly one value 
out of {v

1
,v

2
, ... v

k
}

• Example:   A={1,2,3….,20}: good for 20-sided dice games

• Notation: let’s write the event AHasValueOfv as “A=v”

• Thus…
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Elementary Probability in Pictures

A=1

A=2

A=3

A=4

A=5

(Law of total probability)
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Bunny Break



Definition of Conditional Probability

                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

B

A

Foundation for 
Bayes’ Rule!We say “probability of A given b”

78

A ^ B



Definition of Conditional Probability

                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

Corollary: The Chain Rule

P(A ^ B) = P(A|B) P(B) 
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Definition of Conditional Probability

                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

Corollary: The Chain Rule

P(A ^ B) = P(A|B) P(B) 
P(A ^ B^ C) = P(A|B ^ C) P(B ^ C) 

                =
80



Definition of Conditional Probability

                     P(A ^ B) 
P(A|B)  =  -----------
                    P(B) 

Corollary: The Chain Rule

P(A ^ B) = P(A|B) P(B) 
P(A ^ B^ C) = P(A|B ^ C) P(B ^ C) 

 = P(A|B^ C) P(B|C) P(C) 
81



Independent Events

•Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

• 
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Independent Events

•Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

•Intuition: knowing A tells us nothing about the value of B 
(and vice versa)
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Independent Events

•Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

•Intuition: knowing A tells us nothing about the value of B (and vice 
versa)

•From chain rule

P(A ^ B) = P(A|B) P(B) 
(if) = P(A)P(B) 

- > P(A|B) = P(A) 
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Independent Events

•Definition: two events A and B are independent if:
P(A and B)=P(A)*P(B)

•Intuition: knowing A tells us nothing about the value of B (and vice 
versa)

•From chain rule

• You frequently need to assume the independence of something 
to solve a learning problem.

P(A ^ B) = P(A|B) P(B) = P(A)P(B) 
- > P(A|B) = P(A) 
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Continuous Random Variables

•The discrete case: sum over all values of A is 1

•The continuous case: infinitely many values 
for A and the integral is 1 

also
….

86

f(x) is a probability density function (pdf)



Continuous Random Variables

•The discrete case: sum over all values of A is 1

•The continuous case: infinitely many values 
for A and the integral is 1 

87

f(x) is a probability density function (pdf)

1. 0<=P(A) <= 1
2. Pr(True) = 1
3. P(A or B) = P(A) + P(B) - P(A and B)

also
….



Bayes Rule

Let’s write two expressions for P(A ^ B) 

B

A
A ^ B

P(A ^ B) = P(A|B) P(B) 
P(A ^ B) = P(B|A)P(A) 
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Bayes Rule

Let’s write two expressions for P(A ^ B) 

B

A
A ^ B

P(A ^ B) = P(A|B) P(B) 
P(A ^ B) = P(B|A)P(A) 

P(A|B) P(B) = P(B|A)P(A) 
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Bayes Rule

Let’s write two expressions for P(A ^ B) 

B

A
A ^ B

P(A ^ B) = P(A|B) P(B) 
P(A ^ B) = P(B|A)P(A) 

P(A|B) P(B) = P(B|A)P(A) 
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P(B|A) * P(A)

P(B)
P(A|B) =

Bayes, Thomas (1763) An essay towards 
solving a problem in the doctrine of chances. 
Philosophical Transactions of the Royal Society 
of London, 53:370-418

…by no means merely a curious speculation in the doctrine of chances, but 
necessary to be solved in order to a sure foundation for all our reasonings 
concerning past facts, and what is likely to be hereafter…. necessary to be 
considered by any that would give a clear account of the strength of analogical or 
inductive reasoning…

Bayes’ rule

we call P(A) the “prior”

and P(A|B) the “posterior”
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Other Forms of Bayes Rule

92
Recall useful theorem Slide 72  P(B) = P(B ^ A) + P(B ^ ~A) , and same as before just different letters P(C ^ D) = P(C|D) P(D) 



Applying Bayes Rule

A = you have the flu,   B = you just coughed

Assume:
P(A) = 0.05
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Applying Bayes Rule

A = you have the flu,   B = you just coughed

Assume:
P(A) = 0.05

Also assume the following information is known to you
P(B|A) = 0.80
P(B| ~A) = 0.4

what is P(flu | cough) = P(A|B)?
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Next! Joint distribution

•Probability of >1 thing happening at the same time
– Probability it will rain today and I forgot my umbrella

• P(rain=true,umbrella=false)
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The Joint Distribution

Recipe for making a joint distribution of M variables:

Example: Boolean variables A, B, C
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The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of 
values of your variables (if there are M Boolean 
variables then the table will have 2M rows).

Example: Boolean variables A, B, C

A B C
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of 
values of your variables (if there are M Boolean 
variables then the table will have 2M rows).

2. For each combination of values, say how 
probable it is.

Example: Boolean variables A, B, C

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10
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The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of 
values of your variables (if there are M Boolean 
variables then the table will have 2M rows).

2. For each combination of values, say how probable 
it is.

3. If you subscribe to the axioms of probability, 
those numbers must sum to 1.

Example: Boolean variables A, B, C

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C0.05
0.25

0.10 0.050.05

0.30

What goes here?
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Joint Probability 
Distribution

Once you have the joint distribution, you can ask for the probability of any 
logical expression involving your attribute
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Using the Joint 
Distribution

P(Poor) = 0.7604
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Using the Joint 
Distribution

P(Poor) = 0.7604
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Inference with 
the Joint
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Next! Maximum Likelihood Estimation (MLE)

Rich vs Poor
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What is the probability of a 
person being rich, given you 

know nothing else
about that person?

3:2

105



Let’s say 3/5?

= Probability of being rich = P(rich)

We assume that the wealth of the people in our dataset D is 
independently distributed

? = Probability of being poor = P(poor)
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Let’s say 3/5?

= Probability of being rich = P(rich)

D = { r, p, r, r, p}         = # rich         = # poor
? = Probability of being poor = P(poor)
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We assume that the wealth of the people in our dataset D is 
independently distributed



Let’s say 3/5?

= Probability of being rich = P(rich)

D = { r, p, r, r, p}         = # rich         = # poor
? = Probability of being poor = P(poor)

108

We assume that the wealth of the people in our dataset D is 
independently distributed



Let’s say 3/5?

= Probability of being rich = P(rich)

D = { r, p, r, r, p}         = # rich         = # poor
? = Probability of being poor = P(poor)
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We assume that the wealth of the people in our dataset D is 
independently distributed



Let’s say 3/5?

= Probability of being rich = P(rich)

D = { r, p, r, r, p}         = # rich         = # poor
? = Probability of being poor = P(poor)

110

We assume that the wealth of the people in our dataset D is 
independently distributed



That’s Maximum Likelihood Estimation
(MLE)

It’s not always the best 
solution…
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Issues with MLE estimate
I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any specs.  
How can I find out how it behaves?
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Issues with MLE estimate
I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?

1. Collect some data (20 rolls)
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Issues with MLE estimate
I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?

1. Collect some data (20 rolls)
2. Estimate P(i)=CountOf(rolls of i)/CountOf(any roll) 114



Issues with MLE estimate

P(1)=0

P(2)=0

P(3)=0

P(4)=0.1

…

P(19)=0.25

P(20)=0.2

I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?
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Issues with MLE estimate

P(1)=0

P(2)=0

P(3)=0

P(4)=0.1

…

P(19)=0.25

P(20)=0.2

But: Do I really think it’s impossible to roll a 1,2 or 3?

I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?
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A better solution?

1. Collect some data (20 rolls)
2. Estimate P(i)

I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?
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A better solution

1. Collect some data (20 rolls)
2. Estimate P(i)

0. Imagine some data (20 rolls, each i shows up 1x)

I bought a loaded 20-faced die (d20) on EBay…but it didn’t come with any 
specs.  How can I find out how it behaves?
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A better solution?
P(1)=1/40

P(2)=1/40

P(3)=1/40

P(4)=(2+1)/40

…

P(19)=(5+1)/40

P(20)=(4+1)/40=1/8

0.2 vs. 0.125 – really 
different! Maybe I should 
“imagine” less data?
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What if we know that poor people are much 
more common than rich people?
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We have a belief about 

•P(θ|D) = P(D|θ)*P(θ)/P(D)

     

Now we can incorporate our 
belief about θ 
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We have a belief about 

•P(θ|D) = P(D|θ)*P(θ)/P(D)

      

Now we can incorporate our 
belief about θ 
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We have a belief about 

•P(θ|D) = P(D|θ)*P(θ)/P(D)

     P(D|θ)*P(θ)

Now we can incorporate our 
belief about θ 

This is a MAP (Maximum A Posteriori) Estimate 123



Conjugate Prior

•Our likelihood so far has been based on a Bernoulli 
distribution.

•Beta is a conjugate prior to Bernoulli
• This means their pdfs (probability density functions) play 

nice together

• P(D|θ)*P(θ) will be easy to deal with
• Called the posterior likelihood
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Estimating Parameters
•Maximum Likelihood Estimate (MLE): choose θ that 

maximizes probability of observed data

• Maximum a Posteriori (MAP) estimate: choose θ 
that is most probable given prior probability and 
the data

A tutorial:
 http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf
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Thanks, see you Tuesday!
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