CMPUT 466
 Machine Learning: Day 2 Professor: Bailey Kacsmar kacsmar@ualberta.ca Winter 2024

More resources...

- From the TAs (thank you TAs)
- Shalev-Shwartz, S., \& Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
- Bach F. (2023). Learning Theory from First Principle. (https://www.di.ens.fr/~fbach/ltfp_book.pdf)

Representing data for ML?

Data for ML: A Dataset of a Flower

(attributes, measurements, dimensions)

Iris Dataset

- Four features, plus the class label

Iris Dataset

- Four features, plus the class label
- Our task is to predict class label (flower type) from the 4 features

Iris Dataset

- Four features, plus the class label
- Our task is to predict class label (flower type) from the 4 features
- To graph these feature vectors, we would need a 4D space

- Difficult to visualize

Dimensions as Features

- We can use the dimensions of a vector to represent the values for different features in our data
- E.g. the very famous Iris dataset
- In the figure \rightarrow
- X: sepal length
- Y: sepal width
- Color of dot: flower type

Iris Dataset

- Each of the 4 features are continuous

Iris Dataset

- Each of the 4 features are continuous
- The Class label is discrete

Iris Dataset

- Each of the 4 features are continuous
-The Class label is discrete

- How to represent class label?

Iris Dataset

- Each of the 4 features are continuous
-The Class label is discrete
- How to represent class label?
- Unique integer values
- (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
- One hot vector
- [1, 0, 0] -> Setosa
- [0, 1, 0] -> Versicolor
- $[0,0,1]$-> Virginica

Iris Dataset

- Each of the 4 features are continuous
-The Class label is discrete
- How to represent class label?
- Unique integer values
- (e.g. 1=Setosa, 2=Versicolor, 3=Virginica)
- One hot vectors
- 0, 0] -> Setosa
- [0, 0] -> Versicolor
- [0, 0, $]$-> Virginica

Some terminology/notation...

Discrete features

- Class label is an example of a discrete feature
- As opposed to continuous features like length and width

Discrete features

- Class label is an example of a discrete feature
- As opposed to continuous features like length and width
- Features can also be discrete
- E.g. number of petals
- Favorite movie

Discrete features

- Class label is an example of a discrete feature
- As opposed to continuous features like length and width
- Features can also be discrete
- E.g. number of petals
- Favorite movie
- Sometimes these features are ordinal (they have an ordering)
- Number of petals
- Not favorite movie

Discrete features for ML

-When features are ordinal, it can make sense to represent them with integer numbers

- When features are categorical (i.e. non-ordinal) one hot vectors work better

Discrete features for ML

-When features are ordinal, it can make sense to represent them with integer numbers

- When features are categorical (i.e. non-ordinal) one hot vectors work better

Different Meaning: Ordinal is a relationship

More Terms/Notation

- A vector is a list of numbers
- The number of dimensions is the length of the list

More Terms/Notation

- A vector is a list of numbers
- The number of dimensions is the length of the list
- A matrix is a table of numbers, so it has a length and a height
- E.g. 5x2, 10x100
- Convention is Rows x Columns (e.g., Roman Catholic, Rock, Roll Call, Rate Class)

More Terms/Notation

- A vector is a list of numbers
- The number of dimensions is the length of the list
- A matrix is a table of numbers, so it has a length and a height
- E.g. 5x2, 10×100
- Convention is Rows x Columns
- By this same logic, a vector is actually a matrix with length or height of 1
- 6×1 is a column vector with 6 elements
- 1×3 is a row vector with 3 elements

Notational Conventions

- Square brackets to denote boundaries of vectors/matrices
- Convention is for variable names that denote vectors to be
- Lowercase a
- Bold or have an arrow over them (not always adhered to if the context makes the form of the variable clear) $\overrightarrow{\mathbf{a}}$
- Matrices
- Uppercase
- Plain font

Linear Algebra Notational Recall

- Communicate the size of a matrix like this: $A \in \mathbb{R}^{n \times p}$

Linear Algebra Notational Recall

- Communicate the size of a matrix like this: $A \in \mathbb{R}^{n \times p}$
- The " R " is a symbol for real numbers (i.e. numbers that don't need to be integers) $\quad a \in \mathbb{R}^{p}$

Linear Algebra Notational Recall

- Communicate the size of a matrix like this: $A \in \mathbb{R}^{n \times p}$
- The " R " is a symbol for real numbers (i.e. numbers that don't need to be integers) $\quad a \in \mathbb{R}^{p}$
- Communicate the size of a vector like this: $A \in \mathbb{R}^{n \times p}$

Linear Algebra Notational Recall

- Communicate the size of a matrix like this: $A \in \mathbb{R}^{n \times p}$
- The " R " is a symbol for real numbers (i.e. numbers that don't need to be integers) $\quad a \in \mathbb{R}^{p}$
- Communicate the size of a vector like this: $A \in \mathbb{R}^{n \times p}$
- Transpose (T) means to swap rows for columns $A^{T} \in \mathbb{R}^{p \times n}$

Example: text documents

- Representing text as a feature vector
- Example (nonsensical) text:
- D1: brown cat brown cat dog cat mouse
- D2: brown cat mouse mouse mouse
- D3: dog brown brown cat meow

Example: text documents

- Representing text as a feature vector
- Example (nonsensical) text:
- D1: brown cat brown cat dog cat mouse
- D2: brown cat mouse mouse mouse
- D3: dog brown brown cat meow
- Identify vocabulary (all words across all documents)
- brown, cat, dog, mouse, meow (this is the feature order below)

Example: text documents

- Representing text as a feature vector
- Example (nonsensical) text:
- D1: brown cat brown cat dog cat mouse
- D2: brown cat mouse mouse mouse
- D3: dog brown brown cat meow
- Identify vocabulary (all words across all documents)
- brown, cat, dog, mouse, meow (this is the feature order below)
- Features are the \# of occurrences of each vocabulary word in doc.
-D1: [2, 3, 1, 1, 0]
-D2: $[1,1,0,3,0]$
-D3: $[2,1,1,0,1]$

Vector Addition

$$
\begin{array}{r}
\mathrm{v}:\left[\begin{array}{rr}
{[1,} & 2] \\
\mathrm{w}: & {[3,} \\
-1]
\end{array}\right. \\
\mathrm{V}+\mathrm{w}:[4,
\end{array}
$$

Vector addition for our text dataset?

- Recall:
-D1: [2, 3, 1, 1, 0]
-D2: [1, 1, 0, 3, 0]
- What does it mean to have a new document $\mathrm{A}=\mathrm{D} 1+\mathrm{D} 2$?
- I.e. what document would give us a vector equivalent to $\mathrm{A}=\mathrm{D} 1+\mathrm{D} 2$?

Scalar multiplication for vectors

$3 w$

Scalar multiplication for vectors

Scalar multiplication for vectors

Scalar multiplication mean for our text dataset?

- Recall:
-D1: [2, 3, 1, 1, 0]
-What does it mean to have document $\mathrm{A}=2$ * D1?

Next: Inner product (dot product)

- Definition $\boldsymbol{a} \cdot \boldsymbol{b}=\sum_{i} a_{i} b_{i}$
- E.g. 3-D vectors $\quad \boldsymbol{a} \cdot \boldsymbol{b}=\sum_{i=1}^{3} a_{i} b_{i}$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Inner product (dot product)

- This ends up being quite important in ML
- Corresponds to the weighted sum
- Many models make predictions using a weighted sum of the feature vector
- Example: price vector multiplied by quantity vector
- Makes a scalar: can be used as a measure of similarity (sometimes)

Inner product (dot product)

- Neat tricks with the inner product
- One hot vector times feature vector "selects" a particular element from the vector
- Example: $a=[0,1,0], b=[7,5,8]$

Inner product (dot product)

- Vectors can be squared
- E.g. $b=[7,5,8], b^{2}=$?

Length of a vector (Euclidean Norm)

- Notation $\|a\|$
- Definition $\|a\|=\sqrt{a \cdot a}$

$$
=\sqrt{\sum_{i} a_{i}^{2}}
$$

- You may have seen this in the Pythagorean theorem (length of the hypotenuse)

Vector Similarity

- It's often useful to compute the similarity between two vectors

Vector Similarity

- It's often useful to compute the similarity between two vectors

Vector Similarity

- Definition one: Euclidean distance

Vector Similarity

- Definition one: Euclidean distance

Vector similarity: Euclidean Distance

- Euclidean Distance

$$
\sqrt{(w-v)^{2}}
$$

Vector similarity: Euclidean Distance

- Some problems with Euclidean Distance
- Here x and w are more similar than w and v
- Is that what we want?

Vector Similarity...Cosine Similarity

- Calculate the cosine of the angle between two vectors $a \cdot b$
- Small angle -> very similar
$\overline{\|a\|\|b\|}$
- Large angle -> very dissimilar
- Invariant to length, sensitive to direction

Matrices

- Can be thought of as a function that transforms space
- In ML, our data is usually formatted into a matrix, where the rows correspond to data samples, and the columns correspond to the features

Matrix Multiplication

- E.g. A * B
- Each row vector of A dot product with each column vector of B
- Again, Roll Call to remember which is rows and which is cols
- Scalar appears in resulting matrix where the row and column intersect

$$
A \in \mathbb{R}^{n \times p}
$$

- The \# cols of A must match \# of rows in B

$$
B \in \mathbb{R}^{p \times m}
$$

$$
(A B) \in \mathbb{R}^{n \times m}
$$

Matrix Multiplication

Special Matrices

- Identity matrix (often denoted I)
- Square matrix, All zeros, except for the diagonal elements are 1

$$
\mathbf{I}_{\mathbf{n}}=\underbrace{\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)}_{n \text { columns }}\} n \text { rows }
$$

- Called the Identity because IA = A, for all matrices A

Special Matrices and Invertible Matrices

- Inverse of a matrix $A\left(A^{-1}\right)=I$
- Only square matrices are invertible
- Finding the inverse is complex for large matrices
- We won't worry about it, the computer can do it for us
- Some matrices are not invertible! (Singular) :(

Probability Overview

Why do we care about probability?

- Helps us reason about how to make the best decision for cases were we need to generalize:

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	$?$

Recall: Generalization

- Dealing with previously unseen cases
-Will she walk or drive?

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	$?$

We might plausibly make any of the following arguments:

- She's going to walk because it's raining today and the only other time it rained, she walked.
- She's going to drive because she has always driven on Mondays...

Terminology: Random Variables

- Informally, X is a random variable if
- X denotes something about which we are uncertain
- perhaps the outcome of a randomized experiment
- e.g. rolling a die
- Examples
- $X=$ The hometown of a randomly drawn person from our class
- multivalued
$-X=$ True if two randomly drawn persons from our class have same birthday
- binary

Functions of Random Variables

- Define $P(X)$ as "the fraction of possible worlds in which X is true" or "the fraction of times X holds, in repeated runs of the random experiment"

Functions of Random Variables

- Define $P(X)$ as "the fraction of possible worlds in which X is true" or "the fraction of times X holds, in repeated runs of the random experiment"
- the set of possible worlds is called the sample space, S

Blue Rectangle:
Sample space of all possible worlds (S)

Area $=1$ (all possible things)

A little formalism

More formally, we have

- a sample space \mathbf{S} (e.g., set of students in our class)
- aka the set of possible worlds

A little formalism

- a sample space \mathbf{S} (e.g., set of students in our class)
- aka the set of possible worlds
- a random variable is a function defined over the sample space
- Handedness: S I \{r, I\} (binary, discrete)
- Height: S Real numbers (continuous)

A little formalism

- a sample space \mathbf{S} (e.g., set of students in our class)
- aka the set of possible worlds
- a random variable is a function defined over the sample space
- Handedness: S $\quad\{r, I\}$ (binary, discrete)
- Height: S—Real numbers (continuous)
- an event is a subset of S
- e.g., the subset of S for which handedness $=r$
- e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)

A little formalism

More formally, we have
-a sample space \mathbf{S} (e.g., set of students in our class)

- aka the set of possible worlds
-a random variable is a function defined over the sample space
- Handedness: SI\{r,I\} (binary, discrete)
- Height: SDReal numbers (continuous)
- an event is a subset of S
- e.g., the subset of S for which handedness $=r$
- e.g., the subset of S for which (handedness=r) AND (eyeColor=blue)
-We are often interested in probabilities of specific events and of specific events conditioned on other specific events

The Axiom(s) of Probability

- Assume binary random variables A and B.

The Axiom(s) of Probability

- Assume binary random variables A and B.
$-0<=P(A)<=1$
$-P($ True $)=1$
- P (False) $=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Visualizing Probability Axioms

Worlds in which A is true

Worlds in which A is False ($\sim A$)

Towards Interpreting the axioms

- $P(A)=0$

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true
 $P($ True $)=0$

Towards Interpreting the axioms

- $P(A)=1$

The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true
$P($ True $)=1$

Towards Interpreting the Axioms

$$
0<=P(A)<=1
$$

Towards Interpreting the axioms

- $P(A$ or $B)=P(A)+P(B)$
[WRONG! but why?]

Towards Interpreting the axioms

- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$

Simple addition and subtraction

Another useful theorem

$$
\begin{aligned}
& 0<=P(A)<=1, P(\text { True })=1, P(\text { False })=0, \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

$$
\text { 曽 } \quad P P(A)=P(A \wedge B)+P(A \wedge \sim B)
$$

Elementary Probability in Pictures

$$
\text { - } P(A)=P\left(A^{\wedge} B\right)+P\left(A^{\wedge} \sim B\right)
$$

- $P(A$ or $B)=P\left(A^{\wedge} B\right)+P\left(A^{\wedge} \sim B\right)+P(\sim A \wedge B)$

Extending the Axiom

- $\mathrm{P}(\mathrm{A}$ or B or C$)=$?

Multivalued Discrete Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$
- Example: $\mathrm{A}=\{1,2,3 \ldots, 20\}$: good for 20 -sided dice games
- Notation: let's write the event AHasValueOfv as " $A=v$ "

$$
P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j
$$

- Thus... $P\left(A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right)$ 予

Elementary Probability in Pictures

$$
\sum_{\lambda}^{p}(A=v,)=1
$$

(Law of total probability)

$$
\begin{aligned}
& A=2 \\
& A=1
\end{aligned} \quad A=5
$$

Bunny Break

Definition of Conditional Probability

$P(A \wedge B)$
 P(B) Foundation for Bayes' Rule!

 We say "probability of A given b"

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{P(B)}
$$

Corollary: The Chain Rule

$$
P\left(A^{\wedge} B\right)=P(A \mid B) P(B)
$$

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P\left(A^{\wedge} B\right)}{------}
$$

Corollary: The Chain Rule

$$
\begin{aligned}
P\left(A^{\wedge} B\right) & =P(A \mid B) P(B) \\
P\left(A^{\wedge} B^{\wedge} C\right) & =P\left(A \mid B^{\wedge} C\right) P(B \wedge C) \\
& =
\end{aligned}
$$

Definition of Conditional Probability

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Corollary: The Chain Rule

$$
\begin{aligned}
& P\left(A^{\wedge} B\right)=P(A \mid B) P(B) \\
& P\left(A^{\wedge} B^{\wedge} C\right)=P(A \mid B \wedge C) P(B \wedge C) \\
& \quad=P\left(A \mid B^{\wedge} C\right) P(B \mid C) P(C)
\end{aligned}
$$

Independent Events

-Definition: two events A and B are independent if:

$$
P(A \text { and } B)=P(A) * P(B)
$$

Independent Events

-Definition: two events A and B are independent if:

$$
P(A \text { and } B)=P(A) * P(B)
$$

- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Independent Events

- Definition: two events A and B are independent if:

$$
P(A \text { and } B)=P(A) * P(B)
$$

- Intuition: knowing A tells us nothing about the value of B (and vice versa)
-From chain rule

$$
\begin{aligned}
& P\left(A^{\wedge} B\right)=P(A \mid B) P(B) \\
& (i f)=P(A) P(B) \\
& ->P(A \mid B)=P(A)
\end{aligned}
$$

Independent Events

- Definition: two events A and B are independent if:

$$
P(A \text { and } B)=P(A) * P(B)
$$

- Intuition: knowing A tells us nothing about the value of B (and vice versa)
-From chain rule

$$
\begin{aligned}
& P\left(A^{\wedge} B\right)=P(A \mid B) P(B)=P(A) P(B) \\
& ->P(A \mid B)=P(A)
\end{aligned}
$$

- You frequently need to assume the independence of something to solve a learning problem.

Continuous Random Variables

-The discrete case: sum over all values of A is 1

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

-The continuous case: infinitely many values for A and the integral is 1

$$
\int_{-\infty}^{\infty} f_{p}(x) d x=1
$$

$f(x)$ is a probability density function (pdf)

Continuous Random Variables

-The discrete case: sum over all values of A is 1

$$
\sum_{j=1}^{k} P\left(A=v_{j}\right)=1
$$

-The continuous case: infinitely many values for A and the integral is 1

$$
\int_{-\infty}^{\infty} f_{p}(x) d x=1
$$

$f(x)$ is a probability density function (pdf)

$$
\begin{aligned}
& \text { 1. } 0<=P(A)<=1 \\
& \text { 2. } \operatorname{Pr}(\operatorname{True})=1 \\
& \text { 3. } P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \quad \text { also } \quad \forall X, f_{P}(X) \geq 0
\end{aligned}
$$

Bayes Rule

Let's write two expressions for $\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)$

$$
\begin{aligned}
& P\left(A^{\wedge} B\right)=P(A \mid B) P(B) \\
& P\left(A^{\wedge} B\right)=P(B \mid A) P(A)
\end{aligned}
$$

Bayes Rule

Let's write two expressions for $\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)$

$$
\begin{aligned}
P\left(A^{\wedge} B\right) & =P(A \mid B) P(B) \\
P\left(A^{\wedge} B\right) & =P(B \mid A) P(A) \\
P(A \mid B) P(B) & =P(B \mid A) P(A)
\end{aligned}
$$

Bayes Rule

Let's write two expressions for $\mathrm{P}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)$

$$
\begin{aligned}
P\left(A^{\wedge} B\right) & =P(A \mid B) P(B) \\
P\left(A^{\wedge} B\right) & =P(B \mid A) P(A) \\
P(A \mid B) P(B) & =P(B \mid A) P(A)
\end{aligned}
$$

$P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)} \quad$ Bayes' rule
we call $P(A)$ the "prior"
and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418
...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Other Forms of Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$$
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
$$

Applying Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$A=$ you have the flu, $B=$ you just coughed

Assume:
$P(A)=0.05$

Applying Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$A=$ you have the flu, $B=$ you just coughed

Assume:
$P(A)=0.05$

Also assume the following information is known to you
$P(B \mid A)=0.80$
$P(B \mid \sim A)=0.4$
what is $P(f l u \mid$ cough $)=P(A \mid B)$?

Next! Joint distribution

- Probability of >1 thing happening at the same time
- Probability it will rain today and I forgot my umbrella
- P(rain=true,umbrella=false)

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have $\mathbf{2}^{\mathrm{M}}$ rows).

A	B	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The Joint Distribution

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

3. If you subscribe to the axioms of probability, those numbers must sum to 1 .

Joint Probability Distribution

Once you have the joint distribution, you can ask for the probability of any logical expression involving your attribute

Using the Joint Distribution

gender hours_worked wealth			
Female	v0:40.5-	poor	0.253122
Male		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$$
P(\text { Poor })=0.7604
$$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Using the Joint Distribution

$$
P(\text { Poor })=0.7604
$$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Inference with the Joint

Next! Maximum Likelihood Estimation (MLE)

Rich vs Poor

What is the probability of a person being rich, given you know nothing else about that person?

3:2

Let's say $3 / 5$?

We assume that the wealth of the people in our dataset D is independently distributed
$\theta=$ Probability of being rich $=P($ rich $)$
$?=$ Probability of being poor $=P($ poor $)$

Let's say $3 / 5$?

We assume that the wealth of the people in our dataset D is

$$
\begin{gathered}
\text { independently distributed } \\
\theta=\text { Probability of being rich }=\mathrm{P}(\text { rich }) \\
?=\text { Probability of being poor }=\mathrm{P}(\text { poor }) \\
\mathrm{D}=\{\mathrm{r}, \mathrm{p}, \mathrm{r}, \mathrm{r}, \mathrm{p}\} \quad \alpha_{r}=\# \text { rich } \quad \alpha_{p=} \# \text { poor } \\
P(D)=P(r \text { and } p \text { and } r \text { and } r \text { and } p)
\end{gathered}
$$

Let's say $3 / 5$?

We assume that the wealth of the people in our dataset D is

$$
\begin{gathered}
\text { independently distributed } \\
\theta=\text { Probability of being rich }=\mathrm{P}(\text { rich }) \\
?=\text { Probability of being poor }=\mathrm{P}(\text { poor }) \\
\mathrm{D}=\{\mathrm{r}, \mathrm{p}, \mathrm{r}, \mathrm{r}, \mathrm{p}\} \quad \alpha_{r}=\# \text { rich } \quad \alpha_{p=} \# \text { poor } \\
P(D)=P(r \text { and } p \text { and } r \text { and } r \text { and } p) \\
=P(\text { rich }) * P(\text { poor }) * P(\text { rich }) * \\
P(\text { rich }) * P(\text { poor })
\end{gathered}
$$

Let's say $3 / 5$?

We assume that the wealth of the people in our dataset D is

$$
\begin{aligned}
& \text { independently distributed } \\
& \theta=\text { Probability of being rich }=P(\text { rich }) \\
& ?=\text { Probability of being poor }=P(\text { poor })
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}=\{\mathrm{r}, \mathrm{p}, \mathrm{r}, \mathrm{r}, \mathrm{p}\} \quad \alpha_{r}=\# \text { rich } \quad \alpha_{p}=\# \text { poor } \\
& \begin{aligned}
P(D)= & P(r \text { and } p \text { and } r \text { and } r \text { and } p) \\
& =P(\text { rich }) * P(\text { poor }) * P(\text { rich }) * \\
& \quad P(\text { rich }) * P(\text { poor }) \\
& =\theta *(1-\theta) * \theta * \theta *(1-\theta) \\
& =(1-\theta)^{\alpha_{p}} * \theta^{\alpha_{r}}
\end{aligned}
\end{aligned}
$$

Let's say $3 / 5$?

We assume that the wealth of the people in our dataset D is

$$
\begin{aligned}
& \text { independently distributed } \\
& \theta=\text { Probability of being rich }=P(\text { rich }) \\
& ?=\text { Probability of being poor }=P(\text { poor })
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{D}=\{\mathrm{r}, \mathrm{p}, \mathrm{r}, \mathrm{r}, \mathrm{p}\} \quad \alpha_{r}=\# \text { rich } \quad \alpha_{p}=\# \text { poor } \\
P(D)=P(r \text { and } p \text { and } r \text { and } r \text { and } p) \\
=P(\text { rich }) * P(\text { poor }) * P(\text { rich }) * \\
P(\text { rich }) * P(\text { poor })
\end{gathered}
$$

$$
=\theta *(1-\theta) * \theta * \theta *(1-\theta)
$$

$$
=(1-\theta)^{\alpha_{p}} * \theta^{\alpha_{r}}
$$

That's Maximum Likelihood Estimation (MLE)

It's not always the best solution...

Issues with MLE estimate

I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?

Frequency

Issues with MLE estimate

I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?

Frequency

1. Collect some data (20 rolls)

Issues with MLE estimate

I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?

1. Collect some data (20 rolls)
2. Estimate $\mathrm{P}(\mathrm{i})=$ CountOf(rolls of i$) /$ CountOf(any roll)

Issues with MLE estimate

I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?

Issues with MLE estimate

I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?

But: Do I really think it's impossible to roll a 1,2 or 3 ?

A better solution?

I bought a loaded 20-faced die (d20) on EBay....but it didn't come with any specs. How can I find out how it behaves?

1. Collect some data (20 rolls)

2. Estimate $\mathrm{P}(\mathrm{i})$

A better solution

I bought a loaded 20-faced die (d20) on EBay....but it didn't come with any specs. How can I find out how it behaves?

0 . Imagine some data (20 rolls, each i shows up 1 x) 1. Collect some data (20 rolls)
2. Estimate $\mathrm{P}(\mathrm{i})$

A better solution?

$$
\hat{P}(i)=\frac{\operatorname{CountOf}(i)+1}{\operatorname{Count} O f(\text { ANY })+\operatorname{Count} O f(\text { IMAGINED })}
$$

$$
\begin{aligned}
& P(1)=1 / 40 \\
& P(2)=1 / 40 \\
& P(3)=1 / 40 \\
& P(4)=(2+1) / 40 \\
& \ldots \\
& P(19)=(5+1) / 40 \\
& P(20)=(4+1) / 40=1 / 8
\end{aligned}
$$

0.2 vs. 0.125 - really different! Maybe I should "imagine" less data?

What if we know that poor people are much more common than rich people?

We have a belief about θ

$\cdot P(\theta \mid D)=P(D \mid \theta) * P(\theta) / P(D)$

Now we can incorporate our belief about θ

We have a belief about θ

$\cdot P(\theta \mid D)=P(D \mid \theta) * P(\theta) / P(D)$

Now we can incorporate our belief about θ

We have a belief about θ

$\cdot P(\theta \mid D)=P(D \mid \theta) * P(\theta) / P(D)$

$$
\propto P(D \mid \theta) * P(\theta)
$$

Now we can incorporate our belief about θ
This is a MAP (Maximum A Posteriori) Estimate

Conjugate Prior

- Our likelihood so far has been based on a Bernoulli distribution.
- Beta is a conjugate prior to Bernoulli
- This means their pdfs (probability density functions) play nice together
- $P(\mathbf{D} \mid \boldsymbol{\theta}) * P(\boldsymbol{\theta})$ will be easy to deal with
- Called the posterior likelihood

Estimating Parameters

- Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data

$$
\hat{\theta}=\arg \max _{\theta} P(\mathcal{D} \mid \theta)
$$

- Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data $\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})$

$$
=\arg \max _{\theta}=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

Thanks, see you Tuesday!

